Syntrophism Among Prokaryotes

Abstract

Syntrophism (or syntrophy) is a special kind of symbiosis between two metabolically different types of microorganisms which cooperate by short-distance metabolite transfer. Thus, both organisms together can carry out a metabolic function that neither one can do alone. Syntrophic associations play an essential role in the terminal steps of methane formation from biomass. Here, the partners involved include secondarily fermenting bacteria and methanogens, which together convert intermediates of biomass degradation (amino acids, alcohols, fatty acids, aromatic compounds, etc.) to methane and CO2 at the very end. The partners involved have to share extremely small increments of energy which are in the range of only fractions of an ATP equivalent, at minimum in the range of −20 kJ per mol reaction. In all cases of syntrophic (secondary) fermentations studied so far, ATP is formed via substrate-level phosphorylation, and part of this ATP is reinvested into reversed electron transport systems to release redox equivalents to the partner organism, either as molecular hydrogen or as formate. Also acetate transfer can have an impact on the total energy balance of the partners. The availability of complete genome sequences of syntrophically butyrate- and propionate-degrading syntrophs has advanced our understanding of the biochemistry of these processes considerably in the recent past. A special case is the sulfate-dependent oxidation of methane in marine sediments which, according to our present understanding, is catalyzed by a syntrophic association of methanogens operating in reverse and sulfate-reducing partners. Syntrophy is a wide-spread phenomenon in anoxic environments, and the study of their energy metabolism represents exciting samples of microbial life at minimum energy gains.

Keywords

Hydrogen Partial Pressure Hydrogenotrophic Methanogen Anaerobic Methane Oxidation Complex Organic Matter Syntrophic Association 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors express their gratitude to Marvin P. Bryant, Ralph Wolfe, Norbert Pfennig, Rudolf Thauer, Fritz Widdel, Alex Zehnder, and Ralf Conrad for numerous fruitful discussions about the biology and energetics of syntrophic anaerobes and to their former and present coworkers for their dedicated work on these extremely fastidious bacteria.

References

  1. Ahring BK, Westermann P (1988) Product inhibition of butyrate metabolism by acetate and hydrogen in a thermophilic coculture. Appl Environ Microbiol 54:2393–2397PubMedGoogle Scholar
  2. Auburger G, Winter J (1992) Purification and characterization of benzoyl-CoA ligase from a syntrophic, benzoate-degrading, anaerobic mixed culture. Appl Microbiol Biotechnol 37:789–795PubMedCrossRefGoogle Scholar
  3. Baena S, Fardeau M-L, Labat M, Ollivier B, Garcia J-L, Patel BKC (1998) Aminobacterium colombiense, gen. nov., sp. nov., an amino acid degrading anaerobe isolated from anaerobic sludge. Anaerobe 4:241–250PubMedCrossRefGoogle Scholar
  4. Baena S, Fardeau M-L, Ollivier B, Labat M, Thomas P, Garcia J-L, Patel BKC (1999a) Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium. Int J Syst Bacteriol 49:975–982PubMedCrossRefGoogle Scholar
  5. Baena S, Fardeau M-L, Woo THS, Ollivier B, Labat M, Patel BKC (1999b) Phylogenetic relationships of three amino-acid-utilizing anaerobes, Selenomonas acidaminovorans, “Selenomonas acidaminophila” and Eubacterium acidaminophilum, as inferred from partial 16S rDNA nucleotide sequences and proposal of Thermanaerovibrio acidaminovorans gen. nov., comb. nov. and Anaeromusa acidaminophila gen. nov, comb. nov. Int J Syst Bacteriol 49:969–974PubMedCrossRefGoogle Scholar
  6. Baena S, Fardeau M-L, Labat M, Ollivier B, Garcia BJ-L, Patel BKC (2000) Aminobacterium mobile, sp. nov., a new anaerobic amino-acid-degrading bacterium. Int J Syst Evol Microbiol 50:259–264PubMedCrossRefGoogle Scholar
  7. Barik S, Brulla WJ, Bryant MP (1985) PA-1, a versatile anaerobe obtained in pure culture, catabolizes benzenoids and other compounds in syntrophy with hydrogenotrophs, and P-2 plus Wolinella sp. degrades benzenoids. Appl Environ Microbiol 50:304–310PubMedGoogle Scholar
  8. Barker HA (1940) Studies upon the methane fermentation. IV: The isolation and culture of Methanobacterium omelianskii. Ant v Leeuwenhoek 6:201–220CrossRefGoogle Scholar
  9. Barker HA (1981) Amino acid degradation by anaerobic bacteria. Annu Rev Biochem 50:23–40PubMedCrossRefGoogle Scholar
  10. Beaty PS, McInerney MJ (1987) Growth of Syntrophomonas wolfei in pure cultures on crotonate. Arch Microbiol 147:389–393CrossRefGoogle Scholar
  11. Beaty PS, McInerney MJ (1989) Effect of organic acid anions on the growth and metabolism of Syntrophomonas wolfei in pure culture and in defined consortia. Appl Environ Microbiol 55:977–983PubMedGoogle Scholar
  12. Beaty PS, Wofford NQ, McInerney MJ (1987) Separation of Syntrophomonas wolfei from Methanospirillum hungatei in syntrophic cocultures by using Percoll gradients. Appl Environ Microbiol 53:1183–1185PubMedGoogle Scholar
  13. Ben-Bassat A, Lamed R, Zeikus JG (1981) Ethanol production by thermophilic bacteria: metabolic control of end product formation in Thermoanaerobium brockii. J Bacteriol 146:192–199PubMedGoogle Scholar
  14. Biebl H, Pfennig N (1978) Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch Microbiol 117:9–16CrossRefGoogle Scholar
  15. Bleicher K, Winter J (1994) Formate production and utilization by methanogens and by sewage sludge consortia—interference with the concept of interspecies formate transfer. Appl Microbiol Biotechnol 40:910–915CrossRefGoogle Scholar
  16. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Giesecke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626PubMedCrossRefGoogle Scholar
  17. Boone DR, Bryant MP (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632PubMedGoogle Scholar
  18. Boone DR, Johnson RL, Liu Y (1989a) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems, and implications in the measurement of KM for H2 or formate uptake. Appl Environ Microbiol 55:1735–1741PubMedGoogle Scholar
  19. Boone DR, Johnson RL, Liu Y (1989b) Microbial ecology of interspecies hydrogen and formate transfer in methanogenic ecosystems. In: Hattori T, Ishida Y, Maruyama Y, Morita RY, Uchida A (eds) Recent advances in microbial ecology. Japan Scientific Society Press, Tokyo, pp 450–453Google Scholar
  20. Bryant MP (1979) Microbial methane production—theoretical aspects. J Anim Sci 48:193–201Google Scholar
  21. Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Mikrobiol 59:20–31PubMedCrossRefGoogle Scholar
  22. Bryant MP, Campbell LL, Reddy CA, Crabill MR (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33:1162–1169PubMedGoogle Scholar
  23. Buckel W, Barker HA (1974) Two pathways of glutamate fermentation by anaerobic bacteria. J Bacteriol 117:1248–1260PubMedGoogle Scholar
  24. Cervantes FJ, van der Velde S, Lettinga G, Field JA (2000) Quinones as terminal electron acceptors for anaerobic microbial oxidation of phenolic compounds. Biodegradation 11:313–321PubMedCrossRefGoogle Scholar
  25. Chen SY, Liu XL, Dong XZ (2005) Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors. Int J Syst Evol Microbiol 55:1319–1324PubMedCrossRefGoogle Scholar
  26. Cheng G, Plugge CM, Roelofsen W, Houwen FP, Stams AJM (1992) Selenomonas acidaminovorans sp. nov., a versatile thermophilic proton-reducing anaerobe able to grow by decarboxylation of succinate to propionate. Arch Microbiol 157:169–175Google Scholar
  27. Cherepanov DA, Mulkidjanian AY, Junge W (1999) Transient accumulation of elastic energy in proton translocating ATP synthase. FEBS Lett 449:1–6PubMedCrossRefGoogle Scholar
  28. Conrad R, Wetter B (1990) Influence of temperature on energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other anaerobic bacteria. Arch Microbiol 155:94–98CrossRefGoogle Scholar
  29. Conrad R, Phelps TJ, Zeikus JG (1985) Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments. Appl Environ Microbiol 50:595–601PubMedGoogle Scholar
  30. Conrad R, Schink B, Phelps TJ (1986) Thermodynamics of H2-consuming and H2-producing metabolic reactions in diverse methanogenic environments under in situ conditions. FEMS Microbiol Ecol 38:353–360CrossRefGoogle Scholar
  31. Conrad R, Bak F, Seitz HJ, Thebrath B, Mayer HP, Schütz H (1989) Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol Ecol 62:285–294CrossRefGoogle Scholar
  32. Cord-Ruwisch R, Lovley DR, Schink B (1998) Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl Environ Microbiol 64:2232–2236PubMedGoogle Scholar
  33. Daniel R, Warnecke F, Potekhina JS, Gottschalk G (1999) Identification of the syntrophic partners in a coculture coupling anaerobic methanol oxidation to Fe(III) reduction. FEMS Microbiol Lett 180:197–203PubMedCrossRefGoogle Scholar
  34. De Bok FAM, Stams AJM, Dijkema C, Boone DR (2001) Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl Environ Microbiol 67:1800–1804PubMedCrossRefGoogle Scholar
  35. de Bok FAM, Luijten MLGC, Stams AJM (2002) Biochemical evidence for formate transfer in syntrophic propionate-oxidizing cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei. Appl Environ Microbiol 68:4247–4252PubMedCrossRefGoogle Scholar
  36. de Bok FAM, Harmsen HJM, Plugge CM, de Vries MC, Akkermans ADL, de Vos WM, Stams AJM (2005) The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. Int J Syst Evol Microbiol 55:1697–1703PubMedCrossRefGoogle Scholar
  37. Dimroth K (1983) Thermochemische Daten organischer Verbindungen. In: Synowietz C (ed) D’Ans-Lax Taschenbuch für Chemiker und Physiker, vol 2. Springer, Berlin, pp 997–1038Google Scholar
  38. Dimroth P (1987) Sodium transport decarboxylases and other aspects of sodium ion cycling in bacteria. Microbiol Rev 51:320–340PubMedGoogle Scholar
  39. Dimroth P (2000) Operation of the F0 motor of the ATP synthase. Biochem Biophys Acta 1458:374–386PubMedCrossRefGoogle Scholar
  40. Dolfing J, Jiang B, Henstra AM, Stams AJM, Plugge CM (2008) Syntrophic growth on formate: a new microbial niche in anoxic environments. Appl Environ Microbiol 74:6126–6131PubMedCrossRefGoogle Scholar
  41. Dong X, Stams AJM (1995a) Evidence for H2 and formate formation during syntrophic butyrate and propionate degradation. Anaerobe 1:35–39PubMedCrossRefGoogle Scholar
  42. Dong X, Stams AJM (1995b) Localization of enzymes involved in H2 and formate metabolism in Syntrophospora bryantii. Ant v Leeuwenhoek 67:345–350CrossRefGoogle Scholar
  43. Dong X, Cheng G, Stams AJM (1994a) Butyrate oxidation by Syntrophospora bryantii in coculture with different methanogens and in pure culture with pentenoate as electron acceptor. Appl Microbiol Biotechnol 42:647–652CrossRefGoogle Scholar
  44. Dong X, Plugge CM, Stams AJM (1994b) Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Appl Environ Microbiol 60:2834–2838PubMedGoogle Scholar
  45. Dörner C (1992) Biochemie und Energetik der Wasserstofffreisetzung in der syntrophen Vergärung von Fettsäuren und Benzoat. Thesis, Universität Tübingen, Tübingen, 58–61Google Scholar
  46. Dubourgier HC, Prensier G, Albagnac G (1988) Structure and microbial activities of granular anaerobic sludge. In: Lettinga G, Zehnder AJB, Grotenhuis JTC, Hulshoff LW (eds) Granular anaerobic sludge: microbiology and technology. Pudoc, Wageningen, pp 18–33Google Scholar
  47. Dwyer DF, Weeg-Aerssens E, Shelton DR, Tiedje JM (1988) Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in coculture with hydrogen-oxidizing methanogenic and sulfidogenic bacteria. Appl Environ Microbiol 54:1354–1359PubMedGoogle Scholar
  48. Egli T (1995) The ecological and physiological significance of the growth of heterotrophic microorganisms with mixtures of substrates. In: Jones JG (ed) Advances in microbial ecology, vol 14. Plenum, New York, pp 305–386CrossRefGoogle Scholar
  49. Eichler B, Schink B (1986) Fermentation of primary alcohols and diols, and pure culture of syntrophically alcohol-oxidizing anaerobes. Arch Microbiol 143:60–66CrossRefGoogle Scholar
  50. Elshahed MS, Bhupathiraju VK, Wofford NQ, Nanny MA, McInerney MJ (2001) Metabolism of benzoate, cyclohex-1-ene carboxylate, and cyclohexane carboxylate by “Syntrophus aciditrophicus” strain SB in syntrophic association with H2-using microorganisms. Appl Environ Microbiol 67:1728–1738PubMedCrossRefGoogle Scholar
  51. Engelbrecht S, Junge W (1997) ATP synthase: a tentative structural model. FEBS Lett 414:485–491PubMedCrossRefGoogle Scholar
  52. Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University Press, Oxford, UK, pp 108–171Google Scholar
  53. Fey A, Conrad R (2000) Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl Environ Microbiol 66:4790–4797PubMedCrossRefGoogle Scholar
  54. Finlay BJ, Fenchel T (1992) Methanogens and other bacteria as symbionts of free-living anaerobic ciliates. Symbiosis 14:375–390Google Scholar
  55. Friedrich M, Schink B (1993) Hydrogen formation from glycolate driven by reversed electron transport in membrane vesicles of a syntrophic glycolate-oxidizing bacterium. Eur J Biochem 217:233–240PubMedCrossRefGoogle Scholar
  56. Friedrich M, Schink B (1995) Electron transport phosphorylation driven by glyoxylate respiration with hydrogen as electron donor in membrane vesicles of a glyoxylate-fermenting bacterium. Arch Microbiol 163:268–275PubMedCrossRefGoogle Scholar
  57. Friedrich M, Laderer U, Schink B (1991) Fermentative degradation of glycolic acid by defined syntrophic cocultures. Arch Microbiol 156:398–404CrossRefGoogle Scholar
  58. Friedrich M, Springer N, Ludwig W, Schink B (1996) Phylogenetic position of Desulfofustis glycolicus gen. nov. sp. nov. and Syntrophobotulus glycolicus gen. nov. sp. nov., two strict anaerobes growing with glycolic acid. Int J Syst Bacteriol 46:1065–1069PubMedCrossRefGoogle Scholar
  59. Fuchs GM, Mohamed ES, Altenschmidt U, Roch J, Lach A, Brackmann R, Lockmeyer C, Oswald B (1994) Biochemistry of anaerobic biodegradation of aromatic compounds. In: Ratledge C (ed) Biochemistry of microbial degradation. Kluwer, Dordrecht, pp 513–553CrossRefGoogle Scholar
  60. Fukuzaki S, Nishio N, Shobayashi M, Nagai S (1990) Inhibition of the fermentation of propionate to methane by hydrogen, acetate, and propionate. Appl Environ Microbiol 56:719–723PubMedGoogle Scholar
  61. Girbal L, Ørlygsson J, Reinders BJ, Gottschal JC (1997) Why does Clostridium acetireducens not use interspecies hydrogen transfer for growth on leucine? Curr Microbiol 35:155–160CrossRefGoogle Scholar
  62. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103:11358–11363PubMedCrossRefGoogle Scholar
  63. Gottschalk G (1986) Bacterial metabolism, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  64. Harmsen H, Wullings B, Akkermans ADL, Ludwig W, Stams AJM (1993) Phylogenetic analysis of Syntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Arch Microbiol 160:238–240PubMedGoogle Scholar
  65. Harmsen HJM, Kengen HMP, Akkermans ADL, Stams AJM (1995) Phylogenetic analysis of two syntrophic propionate-oxidizing bacteria in enrichment cultures. Syst Appl Microbiol 18:67–73CrossRefGoogle Scholar
  66. Harmsen HJM, Kengen HMP, Akkermans ADL, Stams AJM, de Vos WM (1996) Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes. Appl Environ Microbiol 62:1656–1663PubMedGoogle Scholar
  67. Harmsen HJ, Van Kuijk BL, Plugge CM, Akkermans AD, De Vos WM, Stams AJ (1998) Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bacteriol 48:1383–1387PubMedCrossRefGoogle Scholar
  68. Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50:1601–1609PubMedCrossRefGoogle Scholar
  69. Hattori S, Galushko AS, Kamagata Y, Schink B (2005) Operation of the CO dehydrogenase/acetyl-CoA pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum. J Bacteriol 187:3471–3476PubMedCrossRefGoogle Scholar
  70. Heider J, Fuchs G (1997) Anaerobic metabolism of aromatic compounds. Eur J Biochem 243:577–596PubMedCrossRefGoogle Scholar
  71. Herrmann G, Jayamani E, Mai G, Buckel W (2008) Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J Bacteriol 190:784–791PubMedCrossRefGoogle Scholar
  72. Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane–consuming archaebacteria in marine sediments. Nature 398:802–805PubMedCrossRefGoogle Scholar
  73. Hoehler TM, Alperin MJ, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biochem Cycles 8:451–463CrossRefGoogle Scholar
  74. Hoehler TM, Alperin MJ, Albert DB, Martens CS (2001) Apparent minimum free energy requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine sediment. FEMS Microbiol Ecol 38:33–41CrossRefGoogle Scholar
  75. Houwen FP, Dijkema C, Schoenmakers CHH, Stams AJM, Zehnder AJB (1987) 13C-NMR study of propionate degradation by a methanogenic coculture. FEMS Microbiol Lett 41:269–274CrossRefGoogle Scholar
  76. Houwen FP, Plokker J, Stams AJM, Zehnder AJB (1990) Enzymatic evidence for involvement of the methylmalonyl-CoA pathway in propionate oxidation by Syntrophobacter wolinii. Arch Microbiol 155:52–55CrossRefGoogle Scholar
  77. Imachi H, Sekiguchi Y, Kamagata Y, Ohashi A, Harada H (2000) Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl Environ Microbiol 66:3608–3615PubMedCrossRefGoogle Scholar
  78. Imachi H, Sakai S, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2007) Pelotomaculum propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionate-oxidizing bacterium. Int J Syst Evol Microbiol 57:1487–1492PubMedCrossRefGoogle Scholar
  79. Iversen N, Jørgensen BB (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol Oceanogr 30:944–955CrossRefGoogle Scholar
  80. Jackson BE, Bhupathiraju VK, Tanner RS, Woese CR, McInerney MJ (1999) Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol 171:107–114PubMedCrossRefGoogle Scholar
  81. Kaden J, Galushko AS, Schink B (2002) Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes. Arch Microbiol 178(1):53–58PubMedCrossRefGoogle Scholar
  82. Koch M, Dolfing J, Wuhrmann K, Zehnder AJB (1983) Pathway of propionate degradation by enriched methanogenic cultures. Appl Environ Microbiol 45:1411–1414PubMedGoogle Scholar
  83. Kosaka T, Kato S, Shimoyama T, Ishii S, Abe T, Watanabe K (2008) The genome of Pelotomaculum thermopropionicum reveals niche-associated evolution in anaerobic microbiota. Genome Res 18:442–448PubMedCrossRefGoogle Scholar
  84. Kosaka T, Uchiyama T, Ishii S, Enoki M, Imachi H, Kamagata Y, Ohashi A, Harada H, Ikenaga H, Watanabe K (2006) Reconstruction and regulation of the central catabolic pathway in the thermophilic propionate-oxidizing syntroph Pelotomaculum thermopropionicum. J Bacteriol 188:202–210PubMedCrossRefGoogle Scholar
  85. Kotsyurbenko OR, Nozhevnikova AN, Soloviova TI, Zavarzin GA (1996) Methanogenesis at low temperatures by microflora of tundra wetland soil. Ant v Leeuwenhoek 69:75–86CrossRefGoogle Scholar
  86. Kremer DR, Nienhuis-Kuiper HE, Hansen TA (1988) Ethanol dissimilation in Desulfovibrio. Arch Microbiol 150:552–557CrossRefGoogle Scholar
  87. Kung JW, Löffler C, Dörner K, Heintz D, Gallien S, Van Dorsselaer A, Friedrich T, Boll M (2009) Identification and characterization of the tungsten-containing class of benzoyl-coenzyme A reductases. Proc Natl Acad Sci USA 106:17687–17692PubMedCrossRefGoogle Scholar
  88. Kung JW, Baumann S, von Bergen M, Müller M, Hagedoorn PL, Hagen WR, Boll M (2010) Reversible biological Birch reduction at an extremely low redox potential. J Am Chem Soc 132:9850–9856PubMedCrossRefGoogle Scholar
  89. Laanbroek HJ, Stal LJ, Veldkamp H (1978) Utilization of hydrogen and formate by Campylobacter spec. under aerobic and anaerobic conditions. Arch Microbiol 119:99–102PubMedCrossRefGoogle Scholar
  90. Laanbroek HJ, Smit AJ, Klein-Nulend G, Veldkamp H (1979) Competition for glutamate between specialized and versatile Clostridium species. Arch Microbiol 120:330–335Google Scholar
  91. Lee MJ, Zinder SH (1988a) Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetate-oxidizing coculture. Arch Microbiol 150:513–518CrossRefGoogle Scholar
  92. Lee MJ, Zinder SH (1988b) Hydrogen partial pressures in a thermophilic acetate-oxidizing methanogenic cocultures. Appl Environ Microbiol 54:1457–1461PubMedGoogle Scholar
  93. Lee MJ, Zinder SH (1988c) Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO H2. Appl Environ Microbiol 54:124–129PubMedGoogle Scholar
  94. Lendenmann U, Snozzi M, Egli T (1996) Kinetics of the simultaneous utilization of sugar mixtures by Escherichia coli in continuous culture. Appl Environ Microbiol 62:1493–1499PubMedGoogle Scholar
  95. Lettinga G, Zehnder AJB, Grotenhuis JTC, Hulshoff LW (eds) (1988) Granular anaerobic sludge: microbiology and technology. Pudoc, WageningenGoogle Scholar
  96. Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int J Syst Bacteriol 49:545–556PubMedCrossRefGoogle Scholar
  97. Löffler C, Kuntze K, Vazquez JR, Rugor A, Kung JW, Böttcher A, Boll M (2011) Occurrence, genes and expression of the W/Se-containing class II benzoyl-coenzyme A reductases in anaerobic bacteria. Environ Microbiol 13:696–709PubMedCrossRefGoogle Scholar
  98. Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448CrossRefGoogle Scholar
  99. Matthies C, Schink B (1992) Reciprocal isomerization of butyrate and isobutyrate by strain WoGl3, and methanogenic isobutyrate degradation by a defined triculture. Appl Environ Microbiol 58:1435–1439PubMedGoogle Scholar
  100. Matthies C, Schink B (1993) Anaerobic degradation of long-chain dicarboxylic acids by methanogenic enrichment cultures. FEMS Microbiol Lett 111:177–182CrossRefGoogle Scholar
  101. McInerney MJ (1988) Anaerobic hydrolysis and fermentation of fats and proteins. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 373–415Google Scholar
  102. McInerney MJ, Wofford NQ (1992) Enzymes involved in crotonate metabolism in Syntrophomonas wolfei. Arch Microbiol 158:344–349CrossRefGoogle Scholar
  103. McInerney MJ, Bryant MP, Pfennig N (1979) Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122:129–135CrossRefGoogle Scholar
  104. McInerney MJ, Bryant MP, Hespell RB, Costerton JW (1981) Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41:1029–1039PubMedGoogle Scholar
  105. McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L, Sieber J, Struchtemeyer CG, Bhattacharyya A, Campbell JW, Gunsalus RP (2007) The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci USA 104:7600–7605PubMedCrossRefGoogle Scholar
  106. McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJM, Schink B, Rohlin L, Gunsalus RP (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58–72PubMedCrossRefGoogle Scholar
  107. Meckenstock RU (1999) Fermentative toluene degradation in anaerobic defined syntrophic cocultures. FEMS Microbiol Lett 177:67–73PubMedCrossRefGoogle Scholar
  108. Meijer WG, Nienhuis-Kuiper ME, Hansen TA (1999) Fermentative bacteria from estuarine mud: phylogenetic position of Acidaminobacter hydrogenoformans and description of a new type of Gram-negative, propionigenic bacterium as Propionibacter pelophilus gen. nov., sp. nov. Int J Syst Bacteriol 49:1039–1044PubMedCrossRefGoogle Scholar
  109. Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Phil Soc 41:445–502CrossRefGoogle Scholar
  110. Mountfort DO, Bryant MP (1982) Isolation and characterization of an anaerobic syntrophic benzoate-degrading bacterium from sewage sludge. Arch Microbiol 133:249–256CrossRefGoogle Scholar
  111. Mountfort DO, Kaspar HF (1986) Palladium-mediated hydrogenation of unsaturated hydrocarbons with hydrogen gas released during anaerobic cellulose degradation. Appl Environ Microbiol 52:744–750PubMedGoogle Scholar
  112. Müller M (1988) Energy metabolism of protozoa without mitochondria. Annu Rev Microbiol 42:465–488PubMedCrossRefGoogle Scholar
  113. Müller N, Stingl U, Griffin BM, Schink B (2008) Dominant sugar utilizers in sediment of Lake Constance depend on syntrophic cooperation with methanogenic partner organisms. Environ Microbiol 10:1501–1511PubMedCrossRefGoogle Scholar
  114. Müller N, Schleheck D, Schink B (2009) Involvement of NADH: acceptor oxidoreductase and butyryl-CoA dehydrogenase in reversed electron transport during syntrophic butyrate oxidation by Syntrophomonas wolfei. J Bacteriol 191:6167–6177PubMedCrossRefGoogle Scholar
  115. Müller N, Worm P, Schink B, Stams AJM, Plugge CM (2010) Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Environ Microbiol Rep 2:489–499CrossRefGoogle Scholar
  116. Nagase M, Matsuo T (1982) Interaction between amino-acid degrading bacteria and methanogenic bacteria in anaerobic digestion. Biotechnol Bioeng 24:2227–2239PubMedCrossRefGoogle Scholar
  117. Nanninga HJ, Gottschal JC (1985) Amino acid fermentation and hydrogen transfer in mixed cultures. FEMS Microbiol Ecol 31:261–269CrossRefGoogle Scholar
  118. Nanninga HJ, Drent WJ, Gottschal JC (1987) Fermentation of glutamate by Selenomonas acidaminophila sp. nov. Arch Microbiol 147:152–157CrossRefGoogle Scholar
  119. Nauhaus K, Treude T, Boetius A, Kruger M (2005) Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ Microbiol 7:98–106PubMedCrossRefGoogle Scholar
  120. Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F (2007) In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulphate. Environ Microbiol 9:187–196PubMedCrossRefGoogle Scholar
  121. Naumann E, Hippe H, Gottschalk G (1983) Betaine: new oxidant in the Stickland reaction and methanogenesis from betaine and L-alanine by a Clostridium sporogenes-Methanosarcina barkeri coculture. Appl Environ Microbiol 45:474–483PubMedGoogle Scholar
  122. Ørlygsson J (1994) The role of interspecies hydrogen transfer on thermophilic protein and amino acid metabolism. PhD thesis, Swedish University of Agricultural Sciences, Uppsala (Chap 4)Google Scholar
  123. Ørlygsson J, Houwen FP, Svensson BH (1993) Anaerobic degradation of protein and the role of methane formation in steady state thermophilic enrichment cultures. Swed J Agric Res 23:45–54Google Scholar
  124. Orphan VJ, Hinrichs K-U, Ussler W, Paull CK, Taylor LT, Sylva SP, Hayes JM, DeLong EF (2001) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67:1922–1934PubMedCrossRefGoogle Scholar
  125. Oude Elferink SJWH, Vorstman WJC, Sopjes A, Stams AJM (1998) Characterization of the sulfate-reducing and syntrophic population in granular sludge from a full-scale anaerobic reactor treating papermill wastewater. FEMS Microbiol Ecol 27:185–194CrossRefGoogle Scholar
  126. Overmann J (2002) Phototrophic consortia: a tight cooperation between non-related eubacteria. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer, Dordrecht, pp 239–255Google Scholar
  127. Pancost RD, Damsté JSS, de Lint S, van der Maarel MJEC, Gottschal KC, The Medinaut Shipboard Scientific Party (2000) Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria. Appl Environ Microbiol 66:1126–1132PubMedCrossRefGoogle Scholar
  128. Pfennig N (1980) Syntrophic mixed cultures and symbiotic consortia with phototrophic bacteria: a review. In: Gottschalk G, Pfennig N, Werner H (eds) Anaerobes and anaerobic infections. Fischer, Stuttgart/New York, pp 127–131Google Scholar
  129. Phelps TJ, Zeikus JG (1984) Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake. Appl Environ Microbiol 48:1088–1095PubMedGoogle Scholar
  130. Platen H, Schink B (1987) Methanogenic degradation of acetone by an enrichment culture. Arch Microbiol 149:136–141PubMedCrossRefGoogle Scholar
  131. Platen H, Janssen PH, Schink B (1994) Fermentative degradation of acetone by an enrichment culture in membrane-separated culture devices and in cell suspensions. FEMS Microbiol Lett 122:27–32PubMedCrossRefGoogle Scholar
  132. Plugge CM, Stams AJM (2001) Arginine catabolism by Thermanaerovibrio acidaminovorans. FEMS Microbiol Lett 195:259–262PubMedCrossRefGoogle Scholar
  133. Plugge CM, Dijkema C, Stams AJM (1993) Acetyl-CoA cleavage pathway in a syntrophic propionate oxidizing bacterium growing on fumarate in the absence of methanogens. FEMS Microbiol Lett 110:71–76CrossRefGoogle Scholar
  134. Plugge CM, Zoetendal EG, Stams AJM (2000) Caloramator coolhaasii, sp. nov. a glutamate-degrading, moderately thermophilic anaerobe. Int J Syst Bacteriol 50:1155–1162Google Scholar
  135. Plugge CM, van Leeuwen JM, Hummelen T, Balk M, Stams AJM (2001) Elucidation of the pathways of catabolic glutamate conversion in three thermophilic anaerobic bacteria. Arch Microbiol 176:29–36PubMedCrossRefGoogle Scholar
  136. Plugge CM, Balk M, Zoetendal EG, Stams AJM (2002) Gelria glutamica, gen. nov., sp. nov., a thermophilic obligate syntrophic glutamate-degrading anaerobe. Int J Syst Evol Microbiol 52(Pt 2):401–407PubMedGoogle Scholar
  137. Reeburgh WS (1980) Anaerobic methane oxidation: rate distributions in Skan Bay sediments. Earth Planet Sci Lett 47:345–352CrossRefGoogle Scholar
  138. Roeder J, Schink B (2009) Syntrophic degradation of cadaverine by a defined methanogenic coculture. Appl Environ Microbiol 75:4821–4828PubMedCrossRefGoogle Scholar
  139. Roy F, Samain E, Dubourgier HC, Albagnac G (1986) Syntrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch Microbiol 145:142–147CrossRefGoogle Scholar
  140. Santegoeds CM, Damgaard LR, Hesselink G, Zopfi J, Lens P, Muyzer G, de Beer D (1999) Distribution of sulfate-reducing and methanogenic bacteria in anaerobic aggregates determined by microsensor and molecular analyses. Appl Environ Microbiol 65:4618–4629PubMedGoogle Scholar
  141. Schink B (1984) Fermentation of 2.3-butanediol by Pelobacter carbinolicus sp. nov., and Pelobacter propionicus, sp. nov., and evidence for propionate formation from C2 compounds. Arch Microbiol 137:33–41CrossRefGoogle Scholar
  142. Schink B (1985a) Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. Arch Microbiol 142:295–301CrossRefGoogle Scholar
  143. Schink B (1985b) Mechanism and kinetics of succinate and propionate degradation in anoxic freshwater sediments and sewage sludge. J Gen Microbiol 131:643–650Google Scholar
  144. Schink B (1990) Conservation of small amounts of energy in fermenting bacteria. In: Finn RK, Präve P (eds) Biotechnology: focus 2. Hanser, New York, pp 63–89Google Scholar
  145. Schink B (1991) Syntrophism among prokaryotes. In: Balows A, Trüper HG, Dworkin M, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, New York, pp 276–299Google Scholar
  146. Schink B (1994) Diversity, ecology, and isolation of acetogenic bacteria. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 197–235CrossRefGoogle Scholar
  147. Schink B (1997) Energetics of syntrophic cooperations in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280PubMedGoogle Scholar
  148. Schink B, Friedrich M (1994) Energetics of syntrophic fatty acid degradation. FEMS Microbiol Rev 15:85–94CrossRefGoogle Scholar
  149. Schink B, Stieb, M (1983) Fermentative degradation of polyethylene glycol by a new strictly anaerobic Gram-negative non-sporeforming bacterium, Pelobacter venetianus sp. nov. Appl Environ Microbiol 45:1905–1913Google Scholar
  150. Schink B, Thauer RK (1988) Energetics of syntrophic methane formation and the influence of aggregation. In: Lettinga G, Zehnder AJB, Grotenhuis JTC, Hulshoff LW (eds) Granular anaerobic sludge: microbiology and technology. Pudoc, Wageningen, pp 5–17Google Scholar
  151. Schink B, Philipp B, Müller J (2000) Anaerobic degradation of phenolic compounds. Naturwissenschaften 87:12–23PubMedCrossRefGoogle Scholar
  152. Schnürer A, Houwen FP, Svensson BH (1994) Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonium concentration. Arch Microbiol 162:70–74CrossRefGoogle Scholar
  153. Schnürer A, Schink B, Svensson BH (1996) Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Bacteriol 46:1145–1152PubMedCrossRefGoogle Scholar
  154. Schnürer A, Svensson BH, Schink B (1997) Enzyme activities in and energetics of acetate metabolism by the mesophilic syntrophically acetate-oxidizing anaerobe Clostridium ultunense. FEMS Microbiol Lett 154:331–336CrossRefGoogle Scholar
  155. Schöcke L, Schink B (1997) Energetics of methanogenic benzoate degradation by Syntrophus gentianae in syntrophic coculture. Microbiology 143:2345–2351CrossRefGoogle Scholar
  156. Schöcke L, Schink B (1998) Membrane-bound proton-translocating pyrophosphatase of Syntrophus gentianae, a syntrophically benzoate-degrading fermenting bacterium. Eur J Biochem 256:589–594PubMedCrossRefGoogle Scholar
  157. Schöcke L, Schink B (1999) Biochemistry and energetics of fermentative benzoate degradation by Syntrophus gentianae. Arch Microbiol 171:331–337CrossRefGoogle Scholar
  158. Scholten JCM, Conrad R (2000) Energetics of syntrophic propionate oxidation in defined batch and chemostat cocultures. Appl Environ Microbiol 66:2934–2942PubMedCrossRefGoogle Scholar
  159. Schönheit P, Moll J, Thauer RK (1980) Growth parameters (Ks, vmax, Ys) of Methanobacterium thermoautotrophicum. Arch Microbiol 127:59–65CrossRefGoogle Scholar
  160. Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H, Müller DJ (2000) Proton-powered turbine of a plant motor. Nature 405:418–419PubMedCrossRefGoogle Scholar
  161. Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (2000) Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50:771–779PubMedCrossRefGoogle Scholar
  162. Stams AJM (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Ant v Leeuwenhoek 66:271–294CrossRefGoogle Scholar
  163. Stams AJM, Hansen TA (1984) Fermentation of glutamate and other compounds by Acidaminobacter hydrogenoformans gen. nov., sp. nov., an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulfate-reducing and methanogenic bacteria. Arch Microbiol 137:329–337CrossRefGoogle Scholar
  164. Stams AJM, Plugge CM (1990) Isolation of syntrophic bacteria on metabolic intermediates. In: Belaich JP, Bruschi M, Garcia JL (eds) Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer. Plenum, New York, pp 473–476CrossRefGoogle Scholar
  165. Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577PubMedCrossRefGoogle Scholar
  166. Stams AJM, Grotenhuis JTC, Zehnder AJB (1989) Structure-function relationship in granular sludge. In: Hattori T, Ishida Y, Maruyama Y, Morita RY, Uchida A (eds) Recent advances in microbial ecology. Japan Scientific Society Press, Tokyo, pp 440–445Google Scholar
  167. Stams AJM, van Dijk JB, Dijkema C, Plugge CM (1993) Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59:1114–1119PubMedGoogle Scholar
  168. Stams AJM, Dijkema C, Plugge CM, Lens P (1998) Contribution of 13C-NMR spectroscopy to the elucidation of pathways of propionate formation and degradation in methanogenic environments. Biodegradation 9:463–473CrossRefGoogle Scholar
  169. Stieb M, Schink B (1985) Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a spore-forming, obligately syntrophic bacterium. Arch Microbiol 140:387–390CrossRefGoogle Scholar
  170. Stieb M, Schink B (1986) Anaerobic degradation of isovalerate by a defined methanogenic coculture. Arch Microbiol 144:291–295CrossRefGoogle Scholar
  171. Stieb M, Schink B (1989) Anaerobic degradation of isobutyrate by methanogenic enrichment cultures and by a Desulfococcus multivorans strain. Arch Microbiol 151:126–132CrossRefGoogle Scholar
  172. Stock D, Leslie AGW, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705PubMedCrossRefGoogle Scholar
  173. Stumm CK, Gijzen HJ, Vogels GD (1982) Association of methanogenic bacteria with ovine rumen ciliates. Br J Nutr 47:95–99PubMedCrossRefGoogle Scholar
  174. Svetlitshnyi V, Rainey F, Wiegel J (1996) Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum. Int J Syst Bacteriol 46:1131–1137PubMedCrossRefGoogle Scholar
  175. Tarlera S, Stams AJM (1999) Degradation of proteins and amino acids by Caloramator proteoclasticus in pure culture and in coculture with Methanobacterium thermoautotrophicum Z245. Appl Microbiol Biotechnol 53:133–138CrossRefGoogle Scholar
  176. Tarlera S, Muxi L, Soubes M, Stams AJM (1997) Caloramator proteoclasticus sp. nov., a new moderately thermophilic anaerobic proteolytic bacterium. Int J Syst Bacteriol 47:651–656PubMedCrossRefGoogle Scholar
  177. Thauer RK, Morris JG (1984) Metabolism of chemotrophic anaerobes: old views and new aspects. In: Kelly DP, Carr NG (eds) The microbe 1984. Part II: prokaryotes and eukaryotes. Cambridge University Press, Cambridge, UK, pp 123–168Google Scholar
  178. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180PubMedGoogle Scholar
  179. Thiele JH, Zeikus JG (1988) Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl Environ Microbiol 54:20–29PubMedGoogle Scholar
  180. Tholozan JL, Samain E, Grivet JP, Moletta R, Dubourguier HC, Albagnac G (1988) Reductive carboxylation of propionate to butyrate in methanogenic ecosystems. Appl Environ Microbiol 54:441–445PubMedGoogle Scholar
  181. Tholozan JL, Samain E, Grivet JP, Albagnac G (1990) Propionate metabolism in a methanogenic enrichment culture: direct reductive carboxylation and acetogenesis pathways. FEMS Microbiol Ecol 73:291–298CrossRefGoogle Scholar
  182. Thomsen TR, Finster K, Ramsing NB (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl Environ Microbiol 67:1646–1656PubMedCrossRefGoogle Scholar
  183. Valentine DL, Reeburgh WS (2000) New perspectives on anaerobic methane oxidation. Environ Microbiol 2:477–484PubMedCrossRefGoogle Scholar
  184. Valentine DL, Blanton DC, Reeburgh WS (2000a) Hydrogen production by methanogens under low-hydrogen conditions. Arch Microbiol 174:415–421PubMedCrossRefGoogle Scholar
  185. Valentine DL, Reeburgh WS, Blanton DC (2000b) A culture apparatus for maintaining H2 at sub-nanomolar concentrations. J Microbiol Methods 39:243–251PubMedCrossRefGoogle Scholar
  186. van Bruggen JJA, Stumm CK, Vogels GD (1983) Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch Microbiol 136:89–95CrossRefGoogle Scholar
  187. van Bruggen JJA, Stumm CK, Zwart KB, Vogels GD (1985) Endosymbiotic methanogenic bacteria of the sapropelic amoeba Mastigella. FEMS Microbiol Ecol 31:187–192CrossRefGoogle Scholar
  188. van Lier JB, Grolle KC, Frijters CT, Stams AJM, Lettinga G (1993) Effects of acetate, propionate, and butyrate on the thermophilic anaerobic degradation of propionate by methanogenic sludge and defined cultures. Appl Environ Microbiol 59:1003–1011PubMedGoogle Scholar
  189. Von Ballmoos C, Wiedenmann A, Dimroth P (2009) Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem 78:649–672CrossRefGoogle Scholar
  190. Wallrabenstein C, Schink B (1994) Evidence of reversed electron transport involved in syntrophic butyrate and benzoate oxidation by Syntrophomonas wolfei and Syntrophus buswellii. Arch Microbiol 162:136–142CrossRefGoogle Scholar
  191. Wallrabenstein C, Hauschild E, Schink B (1994) Pure culture and cytological properties of Syntrophobacter wolinii. FEMS Microbiol Lett 123:249–254CrossRefGoogle Scholar
  192. Wallrabenstein C, Gorny N, Springer N, Ludwig W, Schink B (1995a) Pure culture of Syntrophus buswellii, definition of its phylogenetic status, and description of Syntrophus gentianae sp. nov. Syst Appl Microbiol 18:62–66CrossRefGoogle Scholar
  193. Wallrabenstein C, Hauschild E, Schink B (1995b) Syntrophobacter pfennigii sp. nov., a new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 164:346–352CrossRefGoogle Scholar
  194. Warikoo V, McInerney MJ, Robinson JA, Suflita JM (1996) Interspecies acetate transfer influences the extent of anaerobic benzoate degradation by syntrophic consortia. Appl Environ Microbiol 62:26–32PubMedGoogle Scholar
  195. Widdel F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 469–585Google Scholar
  196. Widdel F, Hansen T (1991) The dissimilatory sulfate and sulfur-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer-Verlag, New York, pp 583–624.Google Scholar
  197. Wildenauer FX, Winter J (1986) Fermentation of isoleucine and arginine by pure and syntrophic cultures of Clostridium sporogenes. FEMS Microbiol Ecol 38:373–379CrossRefGoogle Scholar
  198. Winter J, Schindler F, Wildenauer FX (1987) Fermentation of alanine and glycine by pure and syntrophic cultures of Clostridium sporogenes. FEMS Microbiol Ecol 45:153–161CrossRefGoogle Scholar
  199. Wofford NQ, Beaty PS, McInerney MJ (1986) Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei. J Bacteriol 167:179–185PubMedGoogle Scholar
  200. Worm P, Stams AJM, Cheng X, Plugge CM (2011) Growth- and substrate-dependent transcription of formate dehydrogenase and hydrogenase coding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei. Microbiology 157:280–289PubMedCrossRefGoogle Scholar
  201. Wu W-M, Jain MK, Hickey RF, Zeikus JG (1991) Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria. Appl Environ Microbiol 57:3438–3449PubMedGoogle Scholar
  202. Wu W-M, Hickey RF, Jain M, Zeikus JG (1993) Energetics and regulations of formate and hydrogen metabolism by Methanobacterium formicicum. Arch Microbiol 159:57–65CrossRefGoogle Scholar
  203. Wu W-M, Jain MK, Hickey RF, Zeikus JG (1994) Anaerobic degradation of normal-and branched-chain fatty acids with four or more carbons to methane by a syntrophic methanogenic triculture. Appl Environ Microbiol 57:2220–2226Google Scholar
  204. Wu W-M, Jain MK, Hickey RF, Zeikus JG (1996) Perturbation of syntrophic isobutyrate and butyrate degradation with formate and hydrogen. Biotechnol Bioeng 52:404–411PubMedCrossRefGoogle Scholar
  205. Zehnder AJB (1978) Ecology of methane formation. In: Mitchell R (ed) Water pollution microbiology, vol 2. Wiley, London, pp 349–376Google Scholar
  206. Zehnder AJB, Brock TD (1979) Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol 137:420–432PubMedGoogle Scholar
  207. Zehnder AJB, Ingvorsen K, Marti T (1982) Microbiology of methane bacteria. In: Hughes DE, Stafford DA, Wheatley BI, Baader W, Lettinga G, Nyns EJ, Verstraete W (eds) Anaerobic digestion. Elsevier Biomedical Press, Amsterdam, pp 45–68Google Scholar
  208. Zeikus JG, Winfrey M (1976) Temperature limitation of methanogenesis in aquatic sediments. Appl Environ Microbiol 31:99–107PubMedGoogle Scholar
  209. Zhao H, Yang D, Woese CR, Bryant MP (1989) Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov., nov. comb., based on 16S rRNA sequence analysis of its crotonate-grown pure culture. Int J Syst Bacteriol 40:40–44CrossRefGoogle Scholar
  210. Zindel U, Freudenberg W, Rieth M, Andreesen JR, Schnell J, Widdel F (1988) Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate: description and enzymatic studies. Arch Microbiol 150:254–266CrossRefGoogle Scholar
  211. Zinder SH, Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch Microbiol 138:263–272CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of BiologyUniversity of KonstanzConstanceGermany
  2. 2.Laboratory of MicrobiologyWageningen UniversityWageningenThe Netherlands

Personalised recommendations