The Family Veillonellaceae

  • Hélène MarchandinEmail author
  • Estelle Jumas-Bilak
Reference work entry


The family Veillonellaceae belongs to the phylum Firmicutes, the class Negativicutes, and the order Selenomonadales. Delineation of the family was established in 2010 on the basis of 16S rRNA gene phylogenetic analyses, and to date, the family includes 6 genera of Gram-negative, anaerobic, or microaerophilic cocci and coccobacilli and 25 species, i.e., the genera Veillonella (12 species), Megasphaera and Dialister (5 species each), Allisonella, Anaeroglobus, and Negativicoccus (1 species each). The most striking particularity of this family, and more generally of the class Negativicutes, is to group bacteria with Gram-negative cell wall structure within a phylum of Gram-positive bacteria. Genera can be distinguished based on their phenotypic, genetic, genomic, and phylogenetic characteristics, while molecular-based methods may be required for species affiliation, particularly in the genus Veillonella. The isolates displayed various resistance patterns to antimicrobial agents. The family includes three beer-spoilage species belonging to the genus Megasphaera, other species being representatives of several human and other animal microbiotae, and some of them can act as opportunistic pathogens for animals including humans being usually responsible for polymicrobial infections and more rarely for monomicrobial severe infections like osteoarticular infections or endocarditis.


Bacterial Vaginosis Prosthetic Joint Infection rpoB Gene Ruminal Bacterium Skin Microbiome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Two collaborators have been particularly precious in our work on the family Veillonellaceae, particularly in the characterization of 2 of the 6 genera and of 6 of the 25 species of the family. So, we would like to sincerely thank Bernard Gay, recently retired, for performing electron microscopy studies on all the novel taxa we characterized within this family. We would also like to posthumously dedicate this chapter to Jean-Philippe Carlier working at the National Reference Center of the Pasteur Institute in Paris for his constant help and long, faithful, and fruitful collaboration with our team. And of course, no adventure in the unknown world of Veillonellaceae would have been possible without first isolation and recognition of these unknown bacteria and the authors are very grateful to Dr Hélène Jean-Pierre and to the technical teams from the anaerobe Laboratory of the Montpellier Teaching Hospital and from the bacteriology laboratory of the Faculty of Pharmacy of Montpellier.


  1. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732PubMedPubMedCentralGoogle Scholar
  2. Al-Ahmad A, Roth D, Wolkewitz M, Wiedmann-Al-Ahmad M, Follo M, Ratka-Krüger P, Deimling D, Hellwig E, Hannig C (2010) Change in diet and oral hygiene over an 8-week period: effects on oral health and oral biofilm. Clin Oral Investig 14:391–396PubMedGoogle Scholar
  3. Albert MJ, Bhat P, Rajan D, Maiya PP, Pereira SM, Baker SJ (1978) Faecal flora of South Indian infants and young children in health and with acute gastroenteritis. J Med Microbiol 11:137–143PubMedGoogle Scholar
  4. Alou L, Giménez MJ, Manso F, Sevillano D, Torrico M, González N, Granizo JJ, Bascones A, Prieto J, Maestre JR, Aguilar L (2009) Tinidazole inhibitory and cidal activity against anaerobic periodontal pathogens. Int J Antimicrob Agents 33:449–452PubMedGoogle Scholar
  5. Arai T, Kusakabe A, Komatsu S, Kitasato S (1984) A survey of plasmids in Veillonella strains isolated from human oral cavity. Arch Exp Med 57:233–237Google Scholar
  6. Arif N, Do T, Byun R, Sheehy E, Clark D, Gilbert SC, Beighton D (2008a) Veillonella rogosae sp. nov., an anaerobic, Gram-negative coccus isolated from dental plaque. Int J Syst Evol Microbiol 58:581–584PubMedPubMedCentralGoogle Scholar
  7. Arif N, Sheehy EC, Do T, Beighton D (2008b) Diversity of Veillonella spp. from sound and carious sites in children. J Dent Res 87:278–282PubMedPubMedCentralGoogle Scholar
  8. Bahrani-Mougeot FK, Paster BJ, Coleman S, Barbuto S, Brennan MT, Noll J, Kennedy T, Fox PC, Lockhart PB (2007) Molecular analysis of oral and respiratory bacterial species associated with ventilator-associated pneumonia. J Clin Microbiol 45:1588–1593PubMedPubMedCentralGoogle Scholar
  9. Baquero F, Reig M (1992) Resistance of anaerobic bacteria to antimicrobial agents in Spain. Eur J Clin Microbiol Infect Dis 11:1016–1020PubMedGoogle Scholar
  10. Barnhart RA, Weitekamp MR, Aber RC (1983) Osteomyelitis caused by Veillonella. Am J Med 74:902–904PubMedGoogle Scholar
  11. Baumgartner JC, Falkler WA Jr, Beckerman T (1992) Experimentally induced infection by oral anaerobic microorganisms in a mouse model. Oral Microbiol Immunol 7:253–256PubMedGoogle Scholar
  12. Beighton D, Clark D, Hanakuka B, Gilbert S, Do T (2008) The predominant cultivable Veillonella spp. of the tongue of healthy adults identified using rpoB sequencing. Oral Microbiol Immunol 23:344–347PubMedGoogle Scholar
  13. Beumont MG, Duncan J, Mitchell SD, Esterhai JL Jr, Edelstein PH (1995) Veillonella myositis in an immunocompromised patient. Clin Infect Dis 21:678–679PubMedGoogle Scholar
  14. Bhatti MA, Frank MO (2000) Veillonella parvula meningitis: case report and review of Veillonella infections. Clin Infect Dis 31:839–840PubMedGoogle Scholar
  15. Bik EM, Long CD, Armitage GC, Loomer P, Emerson J, Mongodin EF, Nelson KE, Gill SR, Fraser-Liggett CM, Relman DA (2010) Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J 4:962–974PubMedPubMedCentralGoogle Scholar
  16. Bongaerts GP, Schreurs BW, Lunel FV, Lemmens JA, Pruszczynski M, Merkx MA (2004) Was isolation of Veillonella from spinal osteomyelitis possible due to poor tissue perfusion? Med Hypotheses 63:659–661PubMedGoogle Scholar
  17. Boo TW, Cryan B, O’Donnell A, Fahy G (2005) Prosthetic valve endocarditis caused by Veillonella parvula. J Infect 50:81–83PubMedGoogle Scholar
  18. Botta GA, Arzese A, Minisini R, Trani G (1994) Role of structural and extracellular virulence factors in Gram-negative anaerobic bacteria. Clin Infect Dis 18(Suppl 4):S260–S264PubMedGoogle Scholar
  19. Bousbia S, Papazian L, Saux P, Forel JM, Auffray JP, Martin C, Raoult D, La Scola B (2012) Repertoire of intensive care unit pneumonia microbiota. PLoS One 7:e32486PubMedPubMedCentralGoogle Scholar
  20. Brancaccio M, Legendre GG (1979) Megasphaera elsdenii endocarditis. J Clin Microbiol 10:72–74PubMedPubMedCentralGoogle Scholar
  21. Brito L, Sobrinho AR, Teles R, Socransky S, Haffajee A, Vieira L, Teles F (2012) Microbiologic profile of endodontic infections from HIV− and HIV+ patients using multiple-displacement amplification and checkerboard DNA-DNA hybridization. Oral Dis 18:558–567PubMedPubMedCentralGoogle Scholar
  22. Brook I (1996) Veillonella infections in children. J Clin Microbiol 34:1283–1285PubMedPubMedCentralGoogle Scholar
  23. Brook I (2006) Microbiology of intracranial abscesses associated with sinusitis of odontogenic origin. Ann Otol Rhinol Laryngol 115:917–920PubMedGoogle Scholar
  24. Brook I, Frazier EH (1992) Infections caused by Veillonella species. Infect Dis Clin Pract (Baltim Md) 1:377–381Google Scholar
  25. Brown CJ, Wong M, Davis CC, Kanti A, Zhou X, Forney LJ (2007) Preliminary characterization of the normal microbiota of the human vulva using cultivation-independent methods. J Med Microbiol 56:271–276PubMedGoogle Scholar
  26. Byun R, Carlier J-P, Jacques NA, Marchandin H, Hunter N (2007) Veillonella denticariosi sp. nov., isolated from human carious dentine. Int J Syst Evol Microbiol 57:2844–2848PubMedGoogle Scholar
  27. Carlier J-P (2009a) Genus I. Veillonella. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn, The Firmicutes. Springer, New York, pp 1039–1045Google Scholar
  28. Carlier J-P (2009b) Genus VI. Anaeroglobus. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn, The Firmicutes. Springe, New York, pp 1051–1052Google Scholar
  29. Carlier J, Marchandin H, Jumas-Bilak E, Lorin V, Henry C, Carriere C, Jean-Pierre H (2002) Anaeroglobus geminatus gen. nov., sp. nov., a novel member of the family Veillonellaceae. Int J Syst Evol Microbiol 52:983–986PubMedGoogle Scholar
  30. Casarin RC, Barbagallo A, Meulman T, Santos VR, Sallum EA, Nociti FH, Duarte PM, Casati MZ, Gonçalves RB (2012) Subgingival biodiversity in subjects with uncontrolled type-2 diabetes and chronic periodontitis. J Periodontal Res. doi:10.1111/j.1600-0765.2012.01498.xPubMedGoogle Scholar
  31. Chhour KL, Nadkarni MA, Byun R, Martin FE, Jacques NA, Hunter N (2005) Molecular analysis of microbial diversity in advanced caries. J Clin Microbiol 43:843–849PubMedPubMedCentralGoogle Scholar
  32. Church DL, Simmon KE, Sporina J, Lloyd T, Gregson DB (2011) Identification by 16S rRNA gene sequencing of Negativicoccus succinicivorans recovered from the blood of a patient with hemochromatosis and pancreatitis. J Clin Microbiol 49:3082–3084PubMedPubMedCentralGoogle Scholar
  33. Colombo AP, Boches SK, Cotton SL, Goodson JM, Kent R, Haffajee AD, Socransky SS, Hasturk H, Van Dyke TE, Dewhirst F, Paster BJ (2009) Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J Periodontol 80:1421–1432PubMedPubMedCentralGoogle Scholar
  34. Counotte GHM, Prins RA, Janssen RHAM, DeBie MJA (1981) Role of Megasphaera elsdenii in the fermentation of dl-[2-13C]lactate in the rumen of dairy cattle. Appl Environ Microbiol 42:649–655PubMedPubMedCentralGoogle Scholar
  35. De Lorme M, Craig M (2009) Biotransformation of 2,4,6-trinitrotoluene by pure culture ruminal bacteria. Curr Microbiol 58:81–86PubMedGoogle Scholar
  36. Delwiche EA, Pestka JJ, Tortorello ML (1985) The Veillonellae: gram-negative cocci with a unique physiology. Annu Rev Microbiol 39:175–193PubMedGoogle Scholar
  37. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WA (2010) The human oral microbiome. J Bacteriol 192:5002–5017PubMedPubMedCentralGoogle Scholar
  38. Dewhirst FE, Klein EA, Thompson EC, Blanton JM, Chen T, Milella L, Buckley CM, Davis IJ, Bennett ML, Marshall-Jones ZV (2012) The canine oral microbiome. PLoS One 7:e36067PubMedPubMedCentralGoogle Scholar
  39. Diaz PI, Chalmers NI, Rickard AH, Kong C, Milburn CL, Palmer RJ Jr, Kolenbrander PE (2006) Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl Environ Microbiol 72:2837–2848PubMedPubMedCentralGoogle Scholar
  40. Domann E, Hong G, Imirzalioglu C, Turschner S, Kühle J, Watzel C, Hain T, Hossain H, Chakraborty T (2003) Culture-independent identification of pathogenic bacteria and polymicrobial infections in the genitourinary tract of renal transplant recipients. J Clin Microbiol 41:5500–5510PubMedPubMedCentralGoogle Scholar
  41. Downes J, Munson M, Wade WG (2003) Dialister invisus sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 53:1937–1940PubMedGoogle Scholar
  42. Duran SP, Manzano JV, Valera RC, Machota SV (1990) Obligately anaerobic bacterial species isolated from foot-rot lesions in goats. Br Vet J 146:551–558Google Scholar
  43. Egland PG, Palmer RJ Jr, Kolenbrander PE (2004) Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc Natl Acad Sci USA 101:16917–16922PubMedPubMedCentralGoogle Scholar
  44. Elliott DR, Wilson M, Buckley CM, Spratt DA (2005) Cultivable oral microbiota of domestic dogs. J Clin Microbiol 43:5470–5476PubMedPubMedCentralGoogle Scholar
  45. Elsden SR, Volcani BE, Gilchrist FMC, Lewis D (1956) Properties of a fatty acid forming organism isolated from the rumen of sheep. J Bacteriol 72:681–689PubMedPubMedCentralGoogle Scholar
  46. Engelmann U, Weiss N (1985) Megasphaera cerevisiae sp. nov.: a new gram-negative obligately anaerobic coccus isolated from spoiled beer. Syst Appl Microbiol 6:287–290Google Scholar
  47. Evaldson G, Carlström G, Lagrelius A, Malmborg AS, Nord CE (1980) Microbiological findings in pregnant women with premature rupture of the membranes. Med Microbiol Immunol 168:283–297PubMedGoogle Scholar
  48. Favier CF, Vaughan EE, de Vos WM, Akkermans DL (2002) Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 68:219–226PubMedPubMedCentralGoogle Scholar
  49. Fedorko DP, Drake SK, Stock F, Murray PR (2012) Identification of clinical isolates of anaerobic bacteria using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Eur J Clin Microbiol Infect Dis 31:2257–2262PubMedGoogle Scholar
  50. Finegold SM, John SS, Vu AW, Li CM, Molitoris D, Song Y, Liu C, Wexler HM (2004) In vitro activity of ramoplanin and comparator drugs against anaerobic intestinal bacteria from the perspectiveof potential utility in pathology involving bowel flora. Anaerobe 10:205–211PubMedGoogle Scholar
  51. Fisher RG, Denison MR (1996) Veillonella parvula bacteremia without an underlying source. J Clin Microbiol 34:3235–3236PubMedPubMedCentralGoogle Scholar
  52. Fredricks DN, Fiedler TL, Marrazzo JM (2005) Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med 353:1899–1911PubMedGoogle Scholar
  53. Garner MR, Flint JF, Russell JB (2002) Allisonella histaminiformans gen. nov., sp. nov. a novel bacterium that produces histamine, utilizes histidine as its sole energy source, and could play a role in bovine and equine laminitis. Syst Appl Microbiol 25:498–506PubMedGoogle Scholar
  54. Giesecke D, Wiesmayr S, Ledinek M (1970) Peptostreptococcus elsdenii from the caecum of pigs. J Gen Microbiol 64:123–126PubMedGoogle Scholar
  55. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359PubMedPubMedCentralGoogle Scholar
  56. Goldstein EJ, Citron DM, Finegold SM (1984) Role of anaerobic bacteria in bite-wound infections. Rev Infect Dis 6(suppl 1):S177–S183PubMedGoogle Scholar
  57. Gophna U, Sommerfeld K, Gophna S, Doolittle WF, Veldhuyzen van Zanten SJ (2006) Differences between tissue-associated intestinal microfloras of patients with Crohn’s disease and ulcerative colitis. J Clin Microbiol 44:4136–4141PubMedPubMedCentralGoogle Scholar
  58. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, NISC Comparative Sequencing Program, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA (2009) Topographical and temporal diversity of the human skin microbiome Science 324:1190–1192Google Scholar
  59. Gronow S, Welnitz S, Lapidus A, Nolan M, Ivanova N, Glavina Del Rio T, Copeland A, Chen F, Tice H, Pitluck S, Cheng JF, Saunders E, Brettin T, Han C, Detter JC, Bruce D, Goodwin L, Land M, Hauser L, Chang YJ, Jeffries CD, Pati A, Mavromatis K, Mikhailova N, Chen A, Palaniappan K, Chain P, Rohde M, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lucas S (2010) Complete genome sequence of Veillonella parvula type strain (Te3). Stand Genomic Sci 2:57–65PubMedPubMedCentralGoogle Scholar
  60. Gutierrez J, Davis RE, Lindahl IH, Warwick EJ (1959) Bacterial changes in the rumen during the onset of feed-lot bloat of cattle and characteristics of Peptostreptococcus elsdenii n. sp. Appl Microbiol 7:16–22PubMedPubMedCentralGoogle Scholar
  61. Haikara A, Juvonen R (2009) Genus XV. Pectinatus. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn, The Firmicutes. Springer, New York, pp 1074–1079Google Scholar
  62. Hannan S, Ready D, Jasni AS, Rogers M, Pratten J, Roberts AP (2010) Transfer of antibiotic resistance by transformation with eDNA within oral biofilms. FEMS Immunol Med Microbiol 59:345–349PubMedGoogle Scholar
  63. Haralambie E (1983) Megasphaera elsdenii, occurrence in 2,255 fecal samples from men, chimpanzees and mice. Zentbl Bakteriol Mikrobiol Hyg Ser A 253:489–494Google Scholar
  64. Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30:61–67PubMedGoogle Scholar
  65. Harris JK, De Groote MA, Sagel SD, Zemanick ET, Kapsner R, Penvari C, Kaess H, Deterding RR, Accurso FJ, Pace NR (2007) Molecular identification of bacteria in bronchoalveolar lavage fluid from children with cystic fibrosis. Proc Natl Acad Sci USA 104:20529–20533PubMedPubMedCentralGoogle Scholar
  66. Hebb JK, Cohen CR, Astete SG, Bukusi EA, Totten PA (2004) Detection of novel organisms associated with salpingitis, by use of 16S rDNA polymerase chain reaction. J Infect Dis 190:2109–2120PubMedGoogle Scholar
  67. Hinton A Jr, Hume ME (1995) Antibacterial activity of the metabolic by-products of a Veillonella species and Bacteroides fragilis. Anaerobe 1:121–127PubMedGoogle Scholar
  68. Hofstad T, Kristoffersen T (1970) Chemical composition of endotoxin from oral Veillonella. Acta Path Microbiol Scand 78:760–764Google Scholar
  69. Houston S, Taylor D, Rennie R (1997) Prosthetic valve endocarditis due to Veillonella dispar: successful medical treatment following penicillin desensitization. Clin Infect Dis 24:1013–1014PubMedGoogle Scholar
  70. Human Microbiome Project Consortium (2012) A framework for human microbiome research. Nature 486:215–221Google Scholar
  71. Hyman RW, Fukushima M, Diamond L, Kumm J, Giudice LC, Davis RW (2005) Microbes on the human vaginal epithelium. Proc Natl Acad Sci USA 102:7952–7957PubMedPubMedCentralGoogle Scholar
  72. Isner-Horobeti ME, Lecocq J, Dupeyron A, De Martino SJ, Froehlig P, Vautravers P (2006) Veillonella discitis. A case report. Joint Bone Spine 73:113–115PubMedGoogle Scholar
  73. Jacquot A, Neveu D, Aujoulat F, Mercier G, Marchandin H, Jumas-Bilak E, Picaud J-C (2011) Dynamics and clinical evolution of bacterial gut microflora in extremely premature patients. J Pediatr 158:390–396PubMedGoogle Scholar
  74. Jones V, Wilks M, Johnson G, Warwick S, Hennessey E, Kempley S, Millar M (2010) The use of molecular techniques for bacterial detection in the analysis of gastric aspirates collected from infants on the first day of life. Early Hum Dev 86:167–170PubMedGoogle Scholar
  75. Jumas-Bilak E, Carlier J-P, Jean-Pierre H, Teyssier C, Gay B, Campos J, Marchandin H (2004) Veillonella montpellierensis sp. nov., a novel, anaerobic, Gram-negative coccus isolated from human clinical samples. Int J Syst Evol Microbiol 54:1311–1316PubMedGoogle Scholar
  76. Jumas-Bilak E, Jean-Pierre H, Carlier J-P, Teyssier C, Bernard K, Gay B, Campos J, Morio F, Marchandin H (2005) Dialister micraerophilus sp. nov. and Dialister propionifaciens sp. nov., isolated from human clinical samples. Int J Syst Evol Microbiol 55:2471–2478PubMedGoogle Scholar
  77. Justesen US, Holm A, Knudsen E, Andersen LB, Jensen TG, Kemp M, Skov MN, Gahrn-Hansen B, Møller JK (2011) Species identification of clinical isolates of anaerobic bacteria: a comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems. J Clin Microbiol 49:4314–4318PubMedPubMedCentralGoogle Scholar
  78. Juvonen RJ, Suihko M-L (2006) Megasphaera paucivorans sp. nov., Megasphaera sueciensis sp. nov. and Pectinatus haikarae sp. nov., isolated from brewery samples, and emended description of the genus Pectinatus. Int J Syst Evol Microbiol 56:695–702PubMedGoogle Scholar
  79. Juvonen R, Koivula T, Haikara A (2008) Group-specific PCR-RFLP and real-time PCR methods for detection and tentative discrimination of strictly anaerobic beer-spoilage bacteria of the class Clostridia. Int J Food Microbiol 125:162–169PubMedGoogle Scholar
  80. Kanasi E, Dewhirst FE, Chalmers NI, Kent R Jr, Moore A, Hughes CV, Pradhan N, Loo CY, Tanner AC (2010) Clonal analysis of the microbiota of severe early childhood caries. Caries Res 44:485–497PubMedPubMedCentralGoogle Scholar
  81. Kolenbrander PE (2011) Multispecies communities: interspecies interactions influence growth on saliva as sole nutritional source. Int J Oral Sci 3:49–54PubMedPubMedCentralGoogle Scholar
  82. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Nomicos E, Polley EC, Komarow HD, NISC Comparative Sequence Program, Murray PR, Turner ML, Segre JA (2012) Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 22:850–859Google Scholar
  83. Könönen E, Kanervo A, Takala A, Asikainen S, Jousimies-Somer H (1999) Establishment of oral anaerobes during the first year of life. J Dent Res 78:1634–1639PubMedGoogle Scholar
  84. Kraatz M, Taras D (2008) Veillonella magna, isolated from the jejunal mucosa of a healthy pig, and emended description of Veillonella ratti. Int J Syst Evol Microbiol 58:2755–2761PubMedGoogle Scholar
  85. Krumholz LR, Bryant MP (1986) Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxymonobenzoids or Methanobrevibacter as electron acceptor systems. Arch Microbiol 143:313–318Google Scholar
  86. Kumar PS, Leys EJ, Bryk JM, Martinez FJ, Moeschberger ML, Griffen AL (2006) Changes in periodontal health status are associated with bacterial community shifts as assessed by quantitative 16S cloning and sequencing. J Clin Microbiol 44:3665–3673PubMedPubMedCentralGoogle Scholar
  87. La Scola B, Fournier PE, Raoult D (2011) Burden of emerging anaerobes in the MALDI-TOF and 16S rRNA gene sequencing era. Anaerobe 17:106–112PubMedGoogle Scholar
  88. Lancaster H, Ready D, Mullany P, Spratt D, Bedi R, Wilson M (2003) Prevalence and identification of tetracycline-resistant oral bacteria in children not receiving antibiotic therapy. FEMS Microbiol Lett 228:99–104PubMedGoogle Scholar
  89. Lee PK, Warnecke F, Brodie EL, Macbeth TW, Conrad ME, Andersen GL, Alvarez-Cohen L (2012) Phylogenetic microarray analysis of a microbial community performing reductive dechlorination at a TCE-contaminated site. Environ Sci Technol 46:1044–1054PubMedPubMedCentralGoogle Scholar
  90. Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Møller K (2002) Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690PubMedPubMedCentralGoogle Scholar
  91. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651PubMedPubMedCentralGoogle Scholar
  92. Li E, Hamm CM, Gulati AS, Sartor RB, Chen H, Wu X, Zhang T, Rohlf FJ, Zhu W, Gu C, Robertson CE, Pace NR, Boedeker EC, Harpaz N, Yuan J, Weinstock GM, Sodergren E, Frank DN (2012) Inflammatory bowel diseases phenotype, .. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS One 7:e26284PubMedPubMedCentralGoogle Scholar
  93. Liu JW, Wu J-J, Wang LR, Teng LJ, Huang TC (1998) Two fatal cases of Veillonella bacteremia. Eur J Clin Microbiol Infect Dis 17:62–64PubMedGoogle Scholar
  94. Liu J, Xie Z, Merritt J, Qi F (2012) Establishment of a tractable genetic transformation system in Veillonella spp. Appl Environ Microbiol 78:3488–3491PubMedPubMedCentralGoogle Scholar
  95. Ludwig W, Schleifer K-H, Whitman WB (2009) Revised road map to the phylum Firmicutes. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn, The Firmicutes. Springer, New York, pp 1–13Google Scholar
  96. Luppens SB, Kara D, Bandounas L, Jonker MJ, Wittink FR, Bruning O, Breit TM, Ten Cate JM, Crielaard W (2008) Effect of Veillonella parvula on the antimicrobial resistance and gene expression of Streptococcus mutans grown in a dual-species biofilm. Oral Microbiol Immunol 23:183–189PubMedGoogle Scholar
  97. Malinen E, Rinttilä T, Kajander K, Mättö J, Kassinen A, Krogius L, Saarela M, Korpela R, Palva A (2005) Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. Am J Gastroenterol 100:373–382PubMedGoogle Scholar
  98. Marchandin H (2001a) Organisation génomique, phylogéenie et taxonomie polyphasique des bactéries du genre Veillonella et des genres apparentés du sous-groupe Sporomusa. PhD Thesis, Université Montpelier I, MontpelierGoogle Scholar
  99. Marchandin H, Jean-Pierre H, Carrière C, Canovas F, Darbas H, Jumas-Bilak E (2001b) Prosthetic joint infection due to Veillonella dispar. Eur J Clin Microbiol Infect Dis 20:340–342PubMedGoogle Scholar
  100. Marchandin H (2007) Les cocci à Gram négatif anaérobies. In: Freney J, Renaud F, Leclercq R, Riegel P (eds) Précis de bactériologie clinique, 2nd edn. ESKA, Paris, pp 1733–1738Google Scholar
  101. Marchandin H, Jumas-Bilak E (2006) 16S rRNA gene sequencing: interest and limits for identification and characterization of novel taxa within the family Acidaminococcaceae. In: McNamara PA (ed) Trends in RNA research. Nova Publishers, Hauppauge, pp 225–251Google Scholar
  102. Marchandin H, Jumas-Bilak E, Gay B, Teyssier C, Jean-Pierre H, Simeon de Buochberg M, Carriere C, Carlier J-P (2003a) Phylogenetic analysis of some Sporomusa sub-branch members isolated from human clinical specimens: description of Megasphaera micronuciformis sp. nov. Int J Syst Evol Microbiol 53:547–553PubMedGoogle Scholar
  103. Marchandin H, Teyssier C, Siméon de Buochberg M, Jean-Pierre H, Carriere C, Jumas-Bilak E (2003b) Intra-chromosomal heterogeneity between the four 16S rRNA gene copies in the genus Veillonella: implications for phylogeny and taxonomy. Microbiology 149:1493–1501PubMedGoogle Scholar
  104. Marchandin H, Jean-Pierre H, Campos J, Dubreuil L, Teyssier C, Jumas-Bilak E (2004) nimE gene in a metronidazole-susceptible Veillonella sp. strain. Antimicrob Agents Chemother 48:3207–3208PubMedPubMedCentralGoogle Scholar
  105. Marchandin H, Teyssier C, Jumas-Bilak E, Robert M, Artigues A-C, Jean-Pierre H (2005) Molecular identification of the first human isolate belonging to the Veillonella ratti-Veillonella criceti group based on 16S rDNA and dnaK gene sequencing. Res Microbiol 156:603–607PubMedGoogle Scholar
  106. Marchandin H, Juvonen R, Haikara A (2009) Genus XIII Megasphaera. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn, The Firmicutes. Springer, New York, pp 1082–1089Google Scholar
  107. Marchandin H, Teyssier C, Campos J, Jean-Pierre H, Roger F, Gay B, Carlier J-P, Jumas-Bilak E (2010) Negativicoccus succinicivorans gen. nov., sp. nov., isolated from human clinical samples, emended description of the family Veillonellaceae and description of Negativicutes classis nov., Selenomonadales ord. nov. and Acidaminococcaceae fam. nov. in the bacterial phylum Firmicutes. Int J Syst Evol Microbiol 60:1271–1279PubMedGoogle Scholar
  108. Marounek M, Fliegrova K, Bartos S (1989) Metabolism and some characteristics of ruminal strains of Megasphaera elsdenii. Appl Environ Microbiol 55:1570–1573PubMedPubMedCentralGoogle Scholar
  109. Marriott D, Stark D, Harkness J (2007) Veillonella parvula discitis and secondary bacteremia: a rare infection complicating endoscopy and colonoscopy? J Clin Microbiol 45:672–674PubMedPubMedCentralGoogle Scholar
  110. Marx H, Graf AB, Tatto NE, Thallinger GG, Mattanovich D, Sauer M (2011) Genome sequence of the ruminal bacterium Megasphaera elsdenii. J Bacteriol 193:5578–5579PubMedPubMedCentralGoogle Scholar
  111. Mashima I, Kamaguchi A, Nakazawa F (2011) The distribution and frequency of oral Veillonella spp. in the tongue biofilm of healthy young adults. Curr Microbiol 63:403–407PubMedGoogle Scholar
  112. Mashima I, Kamaguchi A, Miyakawa H, Nakazawa F (2013) Veillonella tobetsuensis sp. nov., a novel, anaerobic, Gram-negative coccus isolated from human tongue biofilm. Int J Syst Evol Microbiol 63:1443–1449PubMedGoogle Scholar
  113. Matera G, Liberto MC, Berlinghieri MC, Focà A (1991) Biological effects of Veillonella parvula and Bacteroides intermedius lipopolysaccharides. Microbiologica 14:315–323PubMedGoogle Scholar
  114. Matera G, Muto V, Vinci M, Zicca E, Abdollahi-Roodsaz S, van de Veerdonk FL, Kullberg BJ, Liberto MC, van der Meer JW, Focà A, Netea MG, Joosten LA (2009) Receptor recognition of and immune intracellular pathways for Veillonella parvula lipopolysaccharide. Clin Vaccine Immunol 16:1804–1809PubMedPubMedCentralGoogle Scholar
  115. Matsumoto K, Ishiyama A, Sakai K, Shiba T, Taguchi S (2011) Biosynthesis of glycolate-based polyesters containing medium-chain-length 3-hydroxyalkanoates in recombinant Escherichia coli expressing engineered polyhydroxyalkanoate synthase. J Biotechnol 156:214–217PubMedGoogle Scholar
  116. Mays TD, Holdeman LV, Moore WEC, Rogosa M, Johnson JL (1982) Taxonomy of the genus Veillonella Prevot. Int J Syst Bacteriol 32:28–36Google Scholar
  117. Michon A-L, Aujoulat F, Roudière L, Soulier O, Zorgniotti I, Jumas-Bilak E, Marchandin H (2010) Intragenomic and intraspecific heterogeneity in rrs may surpass interspecific variability in a natural population of Veillonella. Microbiology 156:2080–2091PubMedGoogle Scholar
  118. Moore LV, Moore WE (1994) Oribaculum catoniae gen. nov., sp. nov.; Catonella morbi gen. nov., sp. nov.; Hallella seregens gen. nov., sp. nov.; Johnsonella ignava gen. nov., sp. nov.; and Dialister pneumosintes gen. nov., comb. nov., nom. rev., anaerobic gram-negative bacilli from the human gingival crevice. Int J Syst Bacteriol 44:187–192PubMedGoogle Scholar
  119. Morio F, Jean-Pierre H, Dubreuil L, Jumas-Bilak E, Calvet L, Mercier G, Devine R, Marchandin H (2007) Antimicrobial susceptibilities and clinical sources of Dialister species. Antimicrob Agents Chemother 51:4498–4501PubMedPubMedCentralGoogle Scholar
  120. Morotomi M, Nagai F, Sakon H, Tanaka R (2008) Dialister succinatiphilus sp. nov. and Barnesiella intestinihominis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 58:2716–2720PubMedGoogle Scholar
  121. Munson MA, Banerjee A, Watson TF, Wade WG (2004) Molecular analysis of the microflora associated with dental caries. J Clin Microbiol 42:3023–3029PubMedPubMedCentralGoogle Scholar
  122. Nyfors S, Kononen E, Bryk A, Syrjanen R, Jousimies-Somer H (2003) Age-related frequency of penicillin resistance of oral Veillonella. Diagn Microbiol Infect Dis 46:279–283PubMedGoogle Scholar
  123. Oh S, Havlen PR, Hussain N (2005) A case of polymicrobial endocarditis caused by anaerobic organisms in an injection drug user. J Gen Intern Med 20:C1–C2PubMedPubMedCentralGoogle Scholar
  124. Ouwerkerk D, Klieve AV, Forster RJ (2002) Enumeration of Megasphaera elsdenii in rumen contents by real-time Taq nuclease assay. J Appl Microbiol 92:753–758PubMedGoogle Scholar
  125. Palmer RJ Jr, Diaz PI, Kolenbrander PE (2006) Rapid succession within the Veillonella population of a developing human oral biofilm in situ. J Bacteriol 188:4117–4124PubMedPubMedCentralGoogle Scholar
  126. Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, Sahasrabudhe A, Dewhirst FE (2001) Bacterial diversity in human subgingival plaque. J Bacteriol 183:3770–3783PubMedPubMedCentralGoogle Scholar
  127. Periasamy S, Kolenbrander PE (2010) Central role of the early colonizer Veillonella sp. in establishing multispecies biofilm communities with initial, middle, and late colonizers of enamel. J Bacteriol 192:2965–2972PubMedPubMedCentralGoogle Scholar
  128. Perkins SD, Woeltje KF, Angenent LT (2010) Endotracheal tube biofilm inoculation of oral flora and subsequent colonization of opportunistic pathogens. Int J Med Microbiol 300:503–511PubMedGoogle Scholar
  129. Pierre Lepargneur J, Dubreuil L, Levy J (2006) Isolation of Dialister pneumosintes isolated from a bacteremia of vaginal origin. Anaerobe 12:274–275PubMedGoogle Scholar
  130. Piknová M, Filova M, Javorský P, Pristas P (2004) Different restriction and modification phenotypes in ruminal lactate-utilizing bacteria. FEMS Microbiol Lett 236:91–95PubMedGoogle Scholar
  131. Piknová M, Bíres O, Javorský P, Pristas P (2006) Limited genetic variability in Megasphaera elsdenii strains. Folia Microbiol (Praha) 51:299–302Google Scholar
  132. Piriz S, Cuenca R, Valle J, Vadillo S (1992) Susceptibilities of anaerobic bacteria isolated from animals with ovine foot rot to 28 antimicrobial agents. Antimicrob Agents Chemother 36:198–201PubMedPubMedCentralGoogle Scholar
  133. Pouchot J, Vinceneux P, Michon C, Mathieu A, Boussougant Y (1992) Pyogenic sacroiliitis due to Veillonella parvula. Clin Infect Dis 15:175PubMedGoogle Scholar
  134. Prabhu R, Altman E, Eiteman MA (2012) Lactate and acrylate metabolism by Megasphaera elsdenii under batch and steady state conditions. Appl Environ Microbiol 78:8564–8570PubMedPubMedCentralGoogle Scholar
  135. Prevot AR (1933) Etude de systématique bactérienne. I. Lois générales. II. Cocci anaérobius. Ann Sci Nat Zool Biolo Anim 15:23–260Google Scholar
  136. Preza D, Olsen I, Willumsen T, Grinde B, Paster BJ (2009) Diversity and site-specificity of the oral microflora in the elderly. Eur J Clin Microbiol Infect Dis 28:1033–1040PubMedPubMedCentralGoogle Scholar
  137. Puhl AA, Greiner R, Selinger LB (2009) Stereospecificity of myo-inositol hexakisphosphate hydrolysis by a protein tyrosine phosphatase-like inositol polyphosphatase from Megasphaera elsdenii. Appl Microbiol Biotechnol 82:95–103PubMedGoogle Scholar
  138. Quintanilha AG, Zilberstein B, Santos MA, Pajecki D, Moura EG, Alves PR, Maluf-Filho F, Cecconello I (2007) A novel sampling method for the investigation of gut mirobiota. World J Gastroenterol 13:3990–3995PubMedPubMedCentralGoogle Scholar
  139. Rainey FA (2009a) Family X. Veillonellaceae. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn, The Firmicutes. Springer, New York, pp 1039–1110Google Scholar
  140. Rainey FA (2009b) Genus IV. Allisonella. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn, The Firmicutes. Springer, New York, pp 1048–1049Google Scholar
  141. Ramos MP, Ferreira SM, Silva-Boghossian CM, Souto R, Colombo AP, Noce CW, de Gonçalves LS (2012) Necrotizing periodontal diseases in HIV-infected Brazilian patients: a clinical and microbiologic descriptive study. Quintessence Int 43:71–82PubMedGoogle Scholar
  142. Ready D, Lancaster H, Qureshi F, Bedi R, Mullany P, Wilson M (2004) Effect of amoxicillin use on oral microbiota in young children. Antimicrob Agents Chemother 48:2883–2887PubMedPubMedCentralGoogle Scholar
  143. Ready D, Pratten J, Roberts AP, Bedi R, Mullany P, Wilson M (2006) Potential role of Veillonella spp. as a reservoir of transferable tetracycline resistance in the oral cavity. Antimicrob Agents Chemother 50:2866–2868PubMedPubMedCentralGoogle Scholar
  144. Ready D, Bedi R, Mullany P, Wilson M (2012) Penicillin and amoxicillin resistance in oral Veillonella spp. Int J Antimicrob Agents 40:188–189PubMedGoogle Scholar
  145. Reig M, Mir N, Baquero F (1997) Penicillin resistance in Veillonella. Antimicrob Agents Chemother 41:1210PubMedPubMedCentralGoogle Scholar
  146. Roberts SA, Shore KP, Paviour SD, Holland D, Morris AJ (2006) Antimicrobial susceptibility of anaerobic bacteria in New Zealand: 1999–2003. J Antimicrob Chemother 57:992–998PubMedGoogle Scholar
  147. Rôças IN, Siqueira JF Jr, Debelian GJ (2011) Analysis of symptomatic and asymptomatic primary root canal infections in adult Norwegian patients. J Endod 37:1206–1212PubMedGoogle Scholar
  148. Rogosa M (1965) The genus Veillonella: IV. Serological groupings, and genus and species emendations. J Bacteriol 90:704–709PubMedPubMedCentralGoogle Scholar
  149. Rogosa M (1971a) Transfer of Peptostreptococcus elsdenii Gutierrez et al. to a new genus, Megasphaera (.. elsdenii (Gutierrez et al.) comb. nov.). Int J Syst Bacteriol 21:187–189Google Scholar
  150. Rogosa M (1971b) Transfer of Veillonella Prevot and Acidaminococcus Rogosa from Neisseriaceae to Veillonellaceae fam. nov. and the inclusion of Megasphaera Rogosa in Veillonellaceae. Int J Syst Bacteriol 21:231–233Google Scholar
  151. Rogosa, M (1984) Anaerobic Gram-negative cocci. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1, Williams & Wilkins, Baltimore, pp 680–685Google Scholar
  152. Rousée JM, Bermond D, Piémont Y, Tournoud C, Heller R, Kehrli P, Harlay ML, Monteil H, Jaulhac B (2002) Dialister pneumosintes associated with human brain abscesses. J Clin Microbiol 40:3871–3873PubMedPubMedCentralGoogle Scholar
  153. Rovery C, Etienne A, Foucault C, Berger P, Brouqui P (2005) Veillonella montpellierensis endocarditis. Emerg Infect Dis 11:1112–1114PubMedPubMedCentralGoogle Scholar
  154. Rudkjøbing VB, Thomsen TR, Alhede M, Kragh KN, Nielsen PH, Johansen UR, Givskov M, Høiby N, Bjarnsholt T (2011) True microbiota involved in chronic lung infection of cystic fibrosis patients found by culturing and 16S rRNA gene analysis. J Clin Microbiol 49:4352–4355PubMedPubMedCentralGoogle Scholar
  155. Rybojad P, Los R, Sawicki M, Tabarkiewicz J, Malm A (2011) Anaerobic bacteria colonizing the lower airways in lung cancer patients. Folia Histochem Cytobiol 49:263–266PubMedGoogle Scholar
  156. Sakamoto K, Konings WN (2003) Beer spoilage bacteria and hop resistance. Int J Food Microbiol 89:105–124PubMedGoogle Scholar
  157. Sato M, Hoshino E, Nomura S, Ishioka K (1993) Salivary microflora of geriatric edentulous persons wearing dentures. Microb Ecol Health Dis 6:293–299Google Scholar
  158. Sato T, Matsuyama J, Sato M, Hoshino E (1997a) Differentiation of Veillonella atypica, Veillonella dispar and Veillonella parvula using restricted fragment-length polymorphism analysis of 16S rDNA amplified by polymerase chain reaction. Oral Microbiol Immunol 12:350–353PubMedGoogle Scholar
  159. Sato T, Sato M, Matsuyama J, Hoshino E (1997b) PCR-restriction fragment length polymorphism analysis of genes coding for 16S rRNA in Veillonella spp. Int J Syst Bacteriol 47:1268–1270PubMedGoogle Scholar
  160. Sato T, Matsumoto K, Okumura T, Yokoi W, Naito E, Yoshida Y, Nomoto K, Ito M, Sawada H (2008) Isolation of lactate-utilizing butyrate-producing bacteria from human feces and in vivo administration of Anaerostipes caccae strain L2 and galacto-oligosaccharides in a rat model. FEMS Microbiol Ecol 66:528–536PubMedGoogle Scholar
  161. Scheithauer BK, Wos-Oxley ML, Ferslev B, Jablonowski H, Pieper DH (2009) Characterization of the complex bacterial communities colonizing biliary stents reveals a host-dependent diversity. ISME J 3:797–807PubMedGoogle Scholar
  162. Sibley CD, Grinwis ME, Field TR, Eshaghurshan CS, Faria MM, Dowd SE, Parkins MD, Rabin HR, Surette MG (2011) Culture enriched molecular profiling of the cystic fibrosis airway microbiome. PLoS One 6:e22702PubMedPubMedCentralGoogle Scholar
  163. Singer E, Calvet L, Mory F, Muller C, Chomarat M, Bézian MC, Bland S, Juvenin ME, Drugeon H, Fosse T, Goldstein F, Jaulhac B, Monteil H, Marchandin H, Jean-Pierre H, Dubreuil L (2008) Monitoring of antibiotic resistance of gram negative anaerobes. Med Mal Infect 38:256–263PubMedGoogle Scholar
  164. Singh N, Yu VL (1992) Osteomyelitis due to Veillonella parvula: case report and review. Clin Infect Dis 14:361–363PubMedGoogle Scholar
  165. Siqueira JF, Rôças IN (2003) Positive and negative bacterial associations involving Dialister pneumosintes in primary endodontic infections. J Endod 29:438–441PubMedGoogle Scholar
  166. Spear GT, Gilbert D, Sikaroodi M, Doyle L, Green L, Gillevet PM, Landay AL, Veazey RS (2010) Identification of rhesus macaque genital microbiota by 16S pyrosequencing shows similarities to human bacterial vaginosis: implications for use as an animal model for HIV vaginal infection. AIDS Res Hum Retroviruses 26:193–200PubMedPubMedCentralGoogle Scholar
  167. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedGoogle Scholar
  168. Stanton TB, Humphrey SB (2003) Isolation of tetracycline-resistant Megasphaera elsdenii strains with novel mosaic gene combinations of tet(O) and tet(W) from swine. Appl Environ Microbiol 69:3874–3882PubMedPubMedCentralGoogle Scholar
  169. Stanton TB, Humphrey SB (2011) Persistence of antibiotic resistance: evaluation of a probiotic approach using antibiotic-sensitive Megasphaera elsdenii strains to prevent colonization of swine by antibiotic-resistant strains. Appl Environ Microbiol 77:7158–7166PubMedPubMedCentralGoogle Scholar
  170. Stanton TB, McDowall J-S, Rasmussen MA (2004) Diverse tetracycline resistance genotypes of Megasphaera elsdenii strains selectively cultured from swine feces. Appl Environ Microbiol 70:3754–3757PubMedPubMedCentralGoogle Scholar
  171. Stewart CS, Bryant MP (1988) The rumen bacteria. In: Hobson PN (ed) The rumen microbial ecosystem. Elsevier Applied Science, London, pp 21–71Google Scholar
  172. Strach M, Siedlar M, Kowalczyk D, Zembala M, Grodzicki T (2006) Sepsis caused by Veillonella parvula infection in a 17-year-old patient with X-linked agammaglobulinemia (Bruton’s disease). J Clin Microbiol 44:2655–2656PubMedPubMedCentralGoogle Scholar
  173. Sugihara PT, Sutter VL, Attebery HR, Bricknell KS, Finegold SM (1974) Isolation of Acidaminococcus fermentans and Megasphaera elsdenii from normal human feces. Appl Microbiol 27:274–275PubMedPubMedCentralGoogle Scholar
  174. Suihko M-L, Haikara A (2001) Characterization of Pectinatus and Megasphaera strains by automated ribotyping. J Inst Brew 107:175–184Google Scholar
  175. Sveen K, Skaug N (1980) Bone resorption stimulated by lipopolysaccharides from Bacteroides, Fusobacterium and Veillonella, and by the lipid A and the polysaccharide part of Fusobacterium lipopolysaccharide. Scand J Dent Res 88:535–542PubMedGoogle Scholar
  176. Theron MM, Janse van Rensburg MN, Chalkley LJ (2003) Penicillin-binding proteins involved in high-level piperacillin resistance in Veillonella spp. J Antimicrob Chemother 52:120–122PubMedGoogle Scholar
  177. Thiel HJ, Schumacher U (1994) Normal flora of the human conjunctiva: a study of 135 persons of various ages. Klin Monatsbl Augenheilkd 205:348–357PubMedGoogle Scholar
  178. Totsuka M, Ono T (1989) Purification and characterization of bacteriophage receptor on Veillonella rodentium cells. Phage-receptor on Veillonella. Antonie Van Leeuwenhoek 56:263–271PubMedGoogle Scholar
  179. Tunney MM, Field TR, Moriarty TF, Patrick S, Doering G, Muhlebach MS, Wolfgang MC, Boucher R, Gilpin DF, McDowell A, Elborn JS (2008) Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am J Respir Crit Care Med 177:995–1001PubMedGoogle Scholar
  180. Valdés MV, Lobbins PM, Slots J (1982) β-lactamase producing bacteria in the human oral cavity. J Oral Pathol 11:58–63PubMedGoogle Scholar
  181. van der Gast CJ, Walker AW, Stressmann FA, Rogers GB, Scott P, Daniels TW, Carroll MP, Parkhill J, Bruce KD (2011) Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME J 5:780–791PubMedPubMedCentralGoogle Scholar
  182. Veloo AC, Knoester M, Degener JE, Kuijper EJ (2011) Comparison of two matrix-assisted laser desorption ionisation-time of flight mass spectrometry methods for the identification of clinically relevant anaerobic bacteria. Clin Microbiol Infect 17:1501–1506PubMedGoogle Scholar
  183. Versalovic J, Koeuth T, McCabe ER, Lupski JR (1991) Use of the polymerase chain reaction for physical mapping of Escherichia coli genes. J Bacteriol 173:5253–5255PubMedPubMedCentralGoogle Scholar
  184. Wade WG (2009) Genus XII. Dialister. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn, The Firmicutes. Springer, New York, pp 1060–1062Google Scholar
  185. Wang M, Ahrné S, Jeppsson B, Molin G (2005) Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 54:219–231PubMedGoogle Scholar
  186. Werner H (1973) Megasphaera elsdenii – a normal inhabitant of the human intestines. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt I Orig A 223:343–347Google Scholar
  187. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glöckner FO, Rossello-Mora R (2008) The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250PubMedGoogle Scholar
  188. Zaninetti-Schaerer A, Van Delden C, Genevay S, Gabay C (2004) Total hip prosthetic joint infection due to Veillonella species. Joint Bone Spine 71:161–163PubMedGoogle Scholar
  189. Zhou X, Brown CJ, Abdo Z, Davis CC, Hansmann MA, Joyce P, Foster JA, Forney LJ (2007) Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women. ISME J 1:121–133PubMedGoogle Scholar
  190. Zilberstein B, Quintanilha AG, Santos MA, Pajecki D, Moura EG, Alves PR, Maluf Filho F, de Souza JA, Gama-Rodrigues J (2007) Digestive tract microbiota in healthy volunteers. Clinics 62:47–54PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Equipe Pathogènes et Environnements, UMR5119 ECOSYMUniversité Montpellier 1MontpellierFrance
  2. 2.Laboratoire de BactériologieCentre Hospitalier Régional Universitaire de MontpellierMontpellierFrance
  3. 3.Laboratoire d’Hygiène hospitalièreCentre Hospitalier Régional Universitaire de MontpellierMontpellierFrance

Personalised recommendations