The Family Thermolithobacteriaceae

Reference work entry

Abstract

Thermolithobacteraceae is a family within an order Thermolithobacterales. It is a monogeneric family and contains two species Thermolithobacter ferrireducens and T. carboxydivorans. Both species are strict anaerobes and extreme thermophiles isolated from terrestrial hot springs. Thermolithobacter species are very close phylogenetically to each other possessing 16S rRNA genes with 99 % of similarity. T. ferrireducens and T. carboxydivorans cells are short rods 1.8–2.0 by 0.5 μm. They are extreme thermophiles and neutrophiles. Both species can grow chemolithoautotrophically. While T. ferrireducens grows at the expense of H2 oxidation with Fe(III) as e-acceptor, T. carboxydivorans grows on CO. The nearest phylogenetically neighboring family is Incertae Sedis XVI which consists of Carboxydocella species, also chemolithoautotrophic CO utilizers.

Keywords

Ferric Iron Band Iron Formation Sodium Sulfide Strict Anaerobe Iron Citrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by Molecular Cell Biology Program Russian Academy of Sciences.

References

  1. Gaspard S, Vazquez F, Holliger C (1998) Localization and solubilization of the iron(III) reductase of Geobacter sulfurreducans. Appl Environ Microbiol 64:3188–3194PubMedPubMedCentralGoogle Scholar
  2. Ljungdahl LG, Wiegel J (1986) Working with anaerobic bacteria. In: Demain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology. American Society for Microbiology, Washington, DC, pp 84–94Google Scholar
  3. Onyenwoke R, Wiegel J (2011) Chapter 8. In: Angrove DM (ed) Magnetite: structure, properties and applications. Nova, New York, pp 297–316Google Scholar
  4. Slepova TV, Sokolova TG, Lysenko AM, Tourova TP, Kolganova TV, Kamzolkina OV, Karpov GA, Bonch-Osmolovskaya EA (2006) Carboxydocella sporoproducens sp. nov., a novel anaerobic CO-utilizing/H2-producing thermophile bacterium from Kamchatka hot spring. Int J Syst Evol Microbiol 56:797–800PubMedCrossRefGoogle Scholar
  5. Slobodkin AI, Wiegel J (1997) Fe(III) as an electron acceptor for H2 oxidation in thermophilic anaerobic enrichment cultures from geothermal areas. Extremophiles 1:106–109PubMedCrossRefGoogle Scholar
  6. Slobodkina GB, Panteleeva AN, Sokolova TG, Bonch-Osmolovskaya EA, Slobodkin AI (2012) Carboxydocellamanganica sp. nov., a thermophilic, dissimilatory Mn(IV)- and Fe(III)-reducing bacterium from a Kamchatka hot spring. Int J Syst Evol Microbiol 62:890–894PubMedCrossRefGoogle Scholar
  7. Sokolova TG, Kostrikina NA, Chernyh NA, Tourova TP, Kolganova TV, Bonch-Osmolovskaya EA (2002) Carboxydocella thermoautotrophica gen. nov., sp. nov., a novel anaerobic CO-utilizing thermophile from a Kamchatkan hot spring. Int J Syst Evol Microbiol 52:1961–1967PubMedCrossRefGoogle Scholar
  8. Sokolova T, Hanel J, Onyenwoke RU, Reysenbach AL, Banta A, Geyer R, González JM, Whitman WB, Wiegel J (2007) Novel chemolithotrophic, thermophilic, anaerobic bacteria Thermolithobacter ferrireducens gen. nov., sp. nov. and Thermolithobacter carboxydivorans sp. nov. Extremophiles 11:145–157PubMedCrossRefGoogle Scholar
  9. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  10. Svetlichny VA, Sokolova TG, Kostrikina NA, Lysenko AM (1994) A new thermophilic anaerobic carboxydotrophic bacterium Carboxydothermus restrictus sp. nov. Microbiology 63:294–297 (English translation of Mikrobiologiya)Google Scholar
  11. Validation list N 116 (2007) Int J Syst Evol Microbiol 57:1371–1373Google Scholar
  12. Wiegel J, Hanel J, Aygen K (2003) Chemolithoautotrophic thermophilic iron(III)-reducer. In: Ljungdahl LG, Adams MW, Barton LL, Ferry JG, Johnson MK (eds) Biochemistry and physiology of anaerobic bacteria. Springer, New YorkGoogle Scholar
  13. Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886PubMedGoogle Scholar
  14. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living-tree project based on 16S and 23S rRNA sequence analyses. System Appl Microbiol 33:291–299CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia
  2. 2.Department of MicrobiologyThe University of GeorgiaAthensUSA

Personalised recommendations