Skip to main content

The Family Haloplasmataceae

  • Reference work entry
  • First Online:

Abstract

Haloplasmataceae is a family within the order Haloplasmatales, which currently includes one single genus and species: Haloplasma contractile. This family has unusual phenotypic features –the most noticeable being a unique morphology and cellular contractility cycle– and a distinct phylogenetic position between the Firmicutes and the Tenericutes (Mollicutes).

Members of the Haloplasmataceae have been isolated from the upper sediments of a deep-sea anoxic brine in the Red Sea, but cultivation-independent studies have found related sequences in a wide range of biotopes including other extreme environments, contaminated soils and marine sediments, as well as intestinal samples. The isolation and description of new representatives of this family might therefore result in significant changes to the current description.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antunes A, Alam I, Bajic VB, Stingl U (2011b) Genome sequence of Haloplasma contractile, an unusual contractile bacterium from a deep-sea anoxic brine lake. J Bacteriol 193:4551–4552

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Antunes A, Ngugi DK, Stingl U (2011a) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3:416–433. doi:10.1111/j.1758-2229.2011.00264.x

    Article  PubMed  Google Scholar 

  • Antunes A, Rainey F, Wanner G, Taborda M, Pätzold J, Nobre MF, da Costa MS, Huber R (2008) A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled Deep of the Red Sea. J Bacteriol 190:3580–3587

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    PubMed  CAS  PubMed Central  Google Scholar 

  • Blum N, Puchelt H (1991) Sedimentary-hosted polymetallic massive sulfide deposits of the Kebrit and Shaban Deeps, Red Sea. Miner Deposita 26:217–227

    Article  CAS  Google Scholar 

  • Botz R, Schmidt M, Wehner H, Hufnagel H, Stoffers P (2007) Organic-rich sediments in brine-filled Shaban- and Kebrit Deeps, northern Red Sea. Chem Geol 244:520–553

    Article  CAS  Google Scholar 

  • Eder W, Schmidt M, Koch M, Garbe-Schönberg D, Huber R (2002) Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4:758–763

    Article  PubMed  CAS  Google Scholar 

  • Guazzaroni ME, Herbst FA, Lores I, Tamames J, Pelaez AI, Lopez-Cortes N, Alcaide M, Del Pozo MV, Vieites JM, von Bergen M, Gallego JL, Bargiela R, Lopez-Lopez A, Pieper DH, Rossello-Mora R, Sanchez J, Seifert J, Ferrer M (2013) Metaproteogenomic insights beyond bacterial response to naphthalene exposure and bio-stimulation. ISME J 7:122–136

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hampp N (2000) Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem Rev 100:1755–1776

    Article  PubMed  CAS  Google Scholar 

  • Hartmann M, Scholten JC, Stoffers P, Whener F (1998) Hydrographic structure of brine-filled Deeps in the Red Sea – new results from the Shaban, Kebrit, Atlantis II, and Discovery Deep. Mar Geol 144:311–330

    Article  CAS  Google Scholar 

  • Huber R, Woese CR, Langworthy TA, Kristjansson JK, Stetter KO (1990) Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the “Thermotogales”. Arch Microbiol 154:105–111

    Article  CAS  Google Scholar 

  • Huber R, Wolfgang E, Heldwein S, Wanner G, Huber H, Rachel R, Stetter KO (1998) Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64:3576–3583

    PubMed  CAS  PubMed Central  Google Scholar 

  • Isenbarger TA, Finney M, Rios-Velazquez C, Handelsman J, Ruvkun G (2008) Miniprimer PCR, a new lens for viewing the microbial world. Appl Environ Microbiol 74:840–849

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kürner J, Frangakis AS, Baumeister W (2005) Cryo-electron tomography reveals the cytoskeletal structure of Spiroplasma melliferum. Science 307:436–438

    Article  PubMed  Google Scholar 

  • López-García P, Kazmierczak J, Benzerara K, Kempe S, Guyot F, Moreira D (2005) Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey. Extremophiles 9:263–274

    Article  PubMed  Google Scholar 

  • Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83

    Article  PubMed  CAS  Google Scholar 

  • Michaelis W, Jenisch A, Richnow HH (1990) Hydrothermal petroleum generation in Red Sea sediments from the Kebrit and Shaban Deeps. Appl Geochem 5:103–114

    Article  CAS  Google Scholar 

  • Mills HJ, Hunter E, Humphrys M, Kerkhof L, McGuinness L, Huettel M, Kostka JE (2008) Characterization of nitrifying, denitrifying, and overall bacterial communities in permeable marine sediments of the northeastern Gulf of Mexico. Appl Environ Microbiol 74:4440–4453

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miyake S, Stingl U (2011) Proteorhodopsin. In: Encyclopedia of life sciences (eLS). Wiley, Chichester. http://www.els.net [doi:10.1002/9780470015902.a0022837]

    Google Scholar 

  • Moissl C, Rachel R, Briegel A, Engelhardt H, Huber R (2005) The unique structure of archaeal ‘hami’, highly complex cell appendages with nano-grappling hooks. Mol Microbiol 56:361–370. doi:10.1111/j.1365-2958.2005.04294.x

    Article  PubMed  CAS  Google Scholar 

  • Pautot G, Guennoc P, Coutelle A, Lyberis N (1984) Discovery of a large brine deep in the northern Red Sea. Nature 310:133–136

    Article  CAS  Google Scholar 

  • Salzman NH, de Jong H, Paterson Y, Harmsen HJM, Welling GW, Bos NA (2002) Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology 148:3651–3660

    PubMed  CAS  Google Scholar 

  • Tindall BJ (2007) Vacuum drying and cryopreservation of prokaryotes. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols, 2nd edn. Humana Press, New Jersey, pp 73–97

    Chapter  Google Scholar 

  • Ugalde JA, Podell S, Narasingarao P, Allen EE (2011) Xenorhodopsins, an enigmatic new class of microbial rhodopsins horizontally transferred between archaea and bacteria. Biol Direct 6:52

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló- Móra R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Antunes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Antunes, A. (2014). The Family Haloplasmataceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30120-9_206

Download citation

Publish with us

Policies and ethics