Advertisement

Lymphatic Contractility and Oxidative Stress

  • Anatoliy A. GashevEmail author
  • Sangeetha Thangaswamy
  • Victor Chatterjee
Reference work entry

Abstract

The lymphatic system plays a vital role in the maintenance of fluid and macromolecule homeostasis, lipid absorption, and immune cell trafficking. All of these functions cannot be performed effectively without proper contractile function of lymphatic vessels. Authors provide a summary of the basic principles of regulation of lymphatic contractility and available data related to the influence of oxidative stress on the contractile function of lymphatic vessels in adulthood and the elderly.

Keywords

Lymph flow Lymphatic Contractility Lymphatic vessel Oxidative stress 

References

  1. Akl TJ, Nagai T, Cote GL, Gashev AA (2011) Mesenteric lymph flow in adult and aged rats. Am J Physiol Heart Circ Physiol 301(5):H1828–H1840PubMedCentralPubMedCrossRefGoogle Scholar
  2. Barton M, Cosentino F, Brandes RP, Moreau P, Shaw S, Luscher TF (1997) Anatomic heterogeneity of vascular aging: role of nitric oxide and endothelin. Hypertension 30(4):817–824PubMedCrossRefGoogle Scholar
  3. Benoit JN, Zawieja DC, Goodman AH, Granger HJ (1989) Characterization of intact mesenteric lymphatic pump and its responsiveness to acute edemagenic stress. Am J Physiol 257(6 Pt 2):H2059–H2069PubMedGoogle Scholar
  4. Bohlen HG, Wang W, Gashev A, Gasheva O, Zawieja D (2009) Phasic contractions of rat mesenteric lymphatics increase basal and phasic nitric oxide generation in vivo. Am J Physiol Heart Circ Physiol 297(4):H1319–H1328PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bohlen HG, Gasheva OY, Zawieja DC (2011) Nitric oxide formation by lymphatic bulb and valves is a major regulatory component of lymphatic pumping. Am J Physiol Heart Circ Physiol 301(5):H1897–H1906PubMedCentralPubMedCrossRefGoogle Scholar
  6. Davis MJ, Davis AM, Ku CW, Gashev AA (2009) Myogenic constriction and dilation of isolated lymphatic vessels. Am J Physiol Heart Circ Physiol 296(2):H293–H302PubMedCentralPubMedCrossRefGoogle Scholar
  7. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95PubMedGoogle Scholar
  8. Eisenhoffer J, Lee S, Johnston MG (1994) Pressure-flow relationships in isolated sheep prenodal lymphatic vessels. Am J Physiol 267(3 Pt 2):H938–H943PubMedGoogle Scholar
  9. Fukai T, Galis ZS, Meng XP, Parthasarathy S, Harrison DG (1998) Vascular expression of extracellular superoxide dismutase in atherosclerosis. J Clin Invest 101(10):2101–2111PubMedCentralPubMedCrossRefGoogle Scholar
  10. Fukai T, Siegfried MR, Ushio-Fukai M, Griendling KK, Harrison DG (1999) Modulation of extracellular superoxide dismutase expression by angiotensin II and hypertension. Circ Res 85(1):23–28PubMedCrossRefGoogle Scholar
  11. Fukai T, Siegfried MR, Ushio-Fukai M, Cheng Y, Kojda G, Harrison DG (2000) Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. J Clin Invest 105(11):1631–1639PubMedCentralPubMedCrossRefGoogle Scholar
  12. Gashev AA (1989) The pump function of the lymphangion and the effect on it of different hydrostatic conditions. [Russian]. Fiziol Zh SSSR Im I M Sechenova 75(12):1737–1743PubMedGoogle Scholar
  13. Gashev AA (2008) Lymphatic vessels: pressure- and flow-dependent regulatory reactions. Ann N Y Acad Sci 1131:100–109PubMedCrossRefGoogle Scholar
  14. Gashev AA, Zawieja DC (2001) Physiology of human lymphatic contractility: a historical perspective. Lymphology 34(3):124–134PubMedGoogle Scholar
  15. Gashev AA, Zawieja DC (2010) Hydrodynamic regulation of lymphatic transport and the impact of aging. Pathophysiology 17(4):277–287PubMedCrossRefGoogle Scholar
  16. Gashev AA, Davis MJ, Zawieja DC (2002) Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct. J Physiol 540(Pt 3):1023–1037PubMedCentralPubMedCrossRefGoogle Scholar
  17. Gashev AA, Davis MJ, Delp MD, Zawieja DC (2004) Regional variations of contractile activity in isolated rat lymphatics. Microcirculation 11(6):477–492PubMedCrossRefGoogle Scholar
  18. Gashev AA, Davis MJ, Gasheva OY, Nepiushchikh ZV, Wang W, Dougherty P, Kelly KA, Cai S, von der Weid PY, Muthuchamy M, Meininger CJ, Zawieja DC (2009) Methods for lymphatic vessel culture and gene transfection. Microcirculation 16(7):615–628PubMedCentralPubMedCrossRefGoogle Scholar
  19. Gasheva OY, Zawieja DC, Gashev AA (2006) Contraction-initiated NO-dependent lymphatic relaxation: a self-regulatory mechanism in rat thoracic duct. J Physiol 575(Pt 3):821–832PubMedCentralPubMedCrossRefGoogle Scholar
  20. Gasheva OY, Knippa K, Nepiushchikh ZV, Muthuchamy M, Gashev AA (2007) Age-related alterations of active pumping mechanisms in rat thoracic duct. Microcirculation 14(8):827–839PubMedCrossRefGoogle Scholar
  21. Hanley CA, Elias RM, Movat HZ, Johnston MG (1989) Suppression of fluid pumping in isolated bovine mesenteric lymphatics by interleukin-1: interaction with prostaglandin E2. Microvasc Res 37(2):218–229PubMedCrossRefGoogle Scholar
  22. Hayashi A, Johnston MG, Nelson W, Hamilton S, McHale NG (1987) Increased intrinsic pumping of intestinal lymphatics following hemorrhage in anesthetized sheep. Circ Res 60(2):265–272PubMedCrossRefGoogle Scholar
  23. Johnston MG, Feuer C (1983) Suppression of lymphatic vessel contractility with inhibitors of arachidonic acid metabolism. J Pharmacol Exp Ther 226(2):603–607PubMedGoogle Scholar
  24. Keaney JF (ed) (2000) Oxidative stress and vascular disease. Kluwer Academic, New York, p 381Google Scholar
  25. Kerr S, Brosnan MJ, McIntyre M, Reid JL, Dominiczak AF, Hamilton CA (1999) Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium. Hypertension 33(6):1353–1358PubMedCrossRefGoogle Scholar
  26. Maneen MJ, Hannah R, Vitullo L, DeLance N, Cipolla MJ (2006) Peroxynitrite diminishes myogenic activity and is associated with decreased vascular smooth muscle F-actin in rat posterior cerebral arteries. Stroke 37(3):894–899PubMedCrossRefGoogle Scholar
  27. McHale NG, Roddie IC (1975) Pumping activity in isolated segments of bovine mesenteric lymphatics. J Physiol 244(1):70P–72PPubMedGoogle Scholar
  28. McHale NG, Roddie IC (1976) The effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels. J Physiol 261(2):255–269PubMedCentralPubMedGoogle Scholar
  29. McIntyre M, Hamilton CA, Rees DD, Reid JL, Dominiczak AF (1997) Sex differences in the abundance of endothelial nitric oxide in a model of genetic hypertension. Hypertension 30(6):1517–1524PubMedCrossRefGoogle Scholar
  30. Mihm MJ, Jing L, Bauer JA (2000) Nitrotyrosine causes selective vascular endothelial dysfunction and DNA damage. J Cardiovasc Pharmacol 36(2):182–187PubMedCrossRefGoogle Scholar
  31. Miller FJ Jr, Gutterman DD, Rios CD, Heistad DD, Davidson BL (1998) Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis. Circ Res 82(12):1298–305PubMedCrossRefGoogle Scholar
  32. Mislin H (1961) Experimental detection of autochthonous automatism of lymph vessels. (In German). Experientia 17:29–30PubMedCrossRefGoogle Scholar
  33. Mislin H (1966) Structural and functional relations of the mesenteric lymph vessels. New trends in basic lymphology. In: Proceedings of a symposium held at Charleroi (Belgium), 11–13 July 1966. Experientia. Suppl. 14: 87–96Google Scholar
  34. Mislin H, Rathenow D (1962) Eksperimentelle untersuchungen uber die bewegungskoordination der lymphangione. [In German]. Rev Suisse Zool 69:334–344Google Scholar
  35. Modi S, Stanton AW, Svensson WE, Peters AM, Mortimer PS, Levick JR (2007) Human lymphatic pumping measured in healthy and lymphoedematous arms by lymphatic congestion lymphoscintigraphy. J Physiol 583(Pt 1):271–285PubMedCentralPubMedCrossRefGoogle Scholar
  36. Mohazzab KM, Kaminski PM, Wolin MS (1994) NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol 266(6 Pt 2):H2568–H2572PubMedGoogle Scholar
  37. Moncada S, Higgs EA (2006) The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol 147(Suppl 1):S193–S201PubMedCentralPubMedGoogle Scholar
  38. Nagai T, Bridenbaugh EA, Gashev AA (2011a) Aging-associated alterations in contractility of rat mesenteric lymphatic vessels. Microcirculation 18(6):463–473PubMedCentralPubMedCrossRefGoogle Scholar
  39. Nagai T, Bridenbaugh EA, Gashev AA (2011b) Aging-associated alterations in contractility of rat mesenteric lymphatic vessels. Microcirculation. doi:10.1111/j.1549-8719.2011.00107.x. [Epub ahead of print]PubMedCentralPubMedGoogle Scholar
  40. O’Donnell VB, Freeman BA (2001) Interactions between nitric oxide and lipid oxidation pathways: implications for vascular disease. Circ Res 88(1):12–21PubMedCrossRefGoogle Scholar
  41. Ohara Y, Peterson TE, Harrison DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 91(6):2546–2551PubMedCentralPubMedCrossRefGoogle Scholar
  42. Ohhashi T, Fukushima S, Azuma T (1977) Vasa vasorum within the media of bovine mesenteric lymphatics. Proc Soc Exp Biol Med 154:582–586PubMedCrossRefGoogle Scholar
  43. Ohhashi T, Azuma T, Sakaguchi M (1980) Active and passive mechanical characteristics of bovine mesenteric lymphatics. Am J Physiol 239(1):H88–H95PubMedGoogle Scholar
  44. Ohkuma M (1989) Lipoperoxide in dog thoracic duct lymph. Lymphology 22(3):150–152PubMedGoogle Scholar
  45. Ohkuma M (1993) Lipoperoxide in the dermis of patients with lymph stasis. Lymphology 26(1):38–41PubMedGoogle Scholar
  46. Olszewski WL (2002) Contractility patterns of normal and pathologically changed human lymphatics. Ann N Y Acad Sci 979:52–63; discussion 76–9PubMedCrossRefGoogle Scholar
  47. Olszewski WL (2008) Contractility patterns of human leg lymphatics in various stages of obstructive lymphedema. Ann N Y Acad Sci 1131:110–118PubMedCrossRefGoogle Scholar
  48. Orlov RS, Lobacheva TA (1977) Intravascular pressure and spontaneous lymph vessels contractions. [Russian]. Bull Exp Biol Med 83(4):392–394CrossRefGoogle Scholar
  49. Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333(6174):664–666PubMedCrossRefGoogle Scholar
  50. Quick CM, Venugopal AM, Gashev AA, Zawieja DC, Stewart RH (2007) Intrinsic pump-conduit behavior of lymphangions. Am J Physiol Regul Integr Comp Physiol 292(4):R1510–R1518PubMedCrossRefGoogle Scholar
  51. Quick CM, Ngo BL, Venugopal AM, Stewart RH (2009) Lymphatic pump-conduit duality: contraction of postnodal lymphatic vessels inhibits passive flow. Am J Physiol Heart Circ Physiol 296(3):H662–H668PubMedCentralPubMedCrossRefGoogle Scholar
  52. Reddy NP, Staub NC (1981) Intrinsic propulsive activity of thoracic duct perfused in anesthetized dogs. Microvasc Res 21(2):183–192PubMedCrossRefGoogle Scholar
  53. Scallan JP, Davis MJ (2013) Genetic Removal of Basal Nitric Oxide Enhances Contractile Activity in Isolated Murine Collecting Lymphatic Vessels. J Physiol 591(8):2139–56Google Scholar
  54. Stralin P, Karlsson K, Johansson BO, Marklund SL (1995) The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol 15(11):2032–2036PubMedCrossRefGoogle Scholar
  55. Thangaswamy S, Bridenbaugh EA, Gashev AA (2012) Evidence of Increased Oxidative Stress in Aged Mesenteric Lymphatic Vessels. Lymphat Res Biol 10(2):53–62PubMedCentralPubMedCrossRefGoogle Scholar
  56. Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, Tordo P, Pritchard KA Jr (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA 95(16):9220–9225PubMedCentralPubMedCrossRefGoogle Scholar
  57. Wang HD, Pagano PJ, Du Y, Cayatte AJ, Quinn MT, Brecher P, Cohen RA (1998) Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide. Circ Res 82(7):810–818PubMedCrossRefGoogle Scholar
  58. Zawieja DC, Greiner ST, Davis KL, Hinds WM, Granger HJ (1991) Reactive oxygen metabolites inhibit spontaneous lymphatic contractions. Am J Physiol 260(6 Pt 2):H1935–H1943PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Anatoliy A. Gashev
    • 1
    Email author
  • Sangeetha Thangaswamy
    • 1
  • Victor Chatterjee
    • 1
  1. 1.Department of Medical PhysiologyCollege of Medicine, Texas A & M Health Science CenterTempleUSA

Personalised recommendations