Advertisement

Strategies to Target Mitochondria and Oxidative Stress by Antioxidants

Reference work entry

Abstract

Many antioxidants have shown a marked disparity in their beneficial effects in laboratory studies and their inability to demonstrate beneficial effects in clinical trials. Moreover, it is not uncommon to find highly contradictory clinical results, which may explain why consumers are less enthusiastic about the use of antioxidants.

This review aims to highlight the critical role of reactive oxygen species (ROS) and antioxidants, the potential mechanisms that might account for these discrepancies in clinical trials, and the strategies to target mitochondrial oxidative stress by antioxidants. There is an urgent need to develop standard methods to evaluate antioxidants and oxidative stress in humans at the mitochondrial level. The determination of the basal level of ROS in normal human may be used to identify pathological ROS levels in patients to recommend specific guidelines for antioxidant treatment.

Keywords

Antioxidant Mitochondria Standardization methods Oxidative stress 

References

  1. Akoh CC, Min DB Food lipids. Chemistry, nutrition and biotechnology, 3rd edn. CRC press/Taylor and Francis group [Book], Boca ratonGoogle Scholar
  2. Bouayed J, Bohn T (2010) Exogenous antioxidants – double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev 3(4):228–237PubMedCentralPubMedCrossRefGoogle Scholar
  3. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6):1615–1625PubMedCrossRefGoogle Scholar
  4. Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29(3–4):222–230PubMedCrossRefGoogle Scholar
  5. Carr AC, Zhu BZ, Frei B (2000) Potential antiatherogenic mechanisms of ascorbate (vitamin C) and alpha-tocopherol (vitamin E). Circ Res 87(5):349–354PubMedCrossRefGoogle Scholar
  6. Edeas M (2009) Antioxidants, controversies and perspectives: how to explain the failure of clinical studies using antioxidants? J Soc Biol 203(3):271–280PubMedCrossRefGoogle Scholar
  7. Edeas M, Attaf D, Mailfert AS, Nasu M, Joubet R (2010) Maillard reaction, mitochondria and oxidative stress: potential role of antioxidants. Pathol Biol 58(3):220–225PubMedCrossRefGoogle Scholar
  8. Farbstein D, Kozak-Blickstein A, Levy AP (2010) Antioxidant vitamins and their use in preventing cardiovascular disease. Molecules (Basel, Switz) 15(11):8098–8110CrossRefGoogle Scholar
  9. Frankel EN, Finley JW (2008) How to standardize the multiplicity of methods to evaluate natural antioxidants. J Agric Food Chem 56:4901–4908PubMedCrossRefGoogle Scholar
  10. Galati G, Lin A, Sultan AM, O’Brien PJ (2006) Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins. Free Radic Biol Med 40(4):570–580PubMedCrossRefGoogle Scholar
  11. Gizi A, Papassotiriou I, Apostolakou F et al (2007) Assessment of oxidative stress in patients with sickle cell disease: the glutathione system and the oxidant-antioxidant status. Blood Cells Mol Dis 46(3):220–225CrossRefGoogle Scholar
  12. Goralczyk R (2009) Beta-carotene and lung cancer in smokers: review of hypotheses and status of research. Nutr Cancer 61(6):767–774PubMedCrossRefGoogle Scholar
  13. Green K, Brand MD, Murphy MP (2004) Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes 53(Suppl 1):110–118CrossRefGoogle Scholar
  14. Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86(5):494–501PubMedCrossRefGoogle Scholar
  15. Grune T (2002) Oxidants and antioxidative defense. Hum Exp Toxicol 21(2):61–62PubMedCrossRefGoogle Scholar
  16. Gutierrez J, Ballinger SW, Darley-Usmar VM, Landar A (2006) Free radicals, mitochondria, and oxidized lipids: the emerging role in signal transduction in vascular cells. Circ Res 99(9):924–932PubMedCrossRefGoogle Scholar
  17. Halliwell B (1984) Oxygen radicals: a commonsense look at their nature and medical importance. Med Biol 62(2):71–77PubMedGoogle Scholar
  18. Halliwell B (2002) Effect of diet on cancer development: is oxidative DNA damage a biomarker? Free Radic Biol Med 32(10):968–974PubMedCrossRefGoogle Scholar
  19. Halliwell B (2009) The wanderings of free radicals. Free Radic Biol Med 46:531–542PubMedCrossRefGoogle Scholar
  20. Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85PubMedCrossRefGoogle Scholar
  21. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77(5):598–625PubMedCrossRefGoogle Scholar
  22. Klings ES, Farber HW (2001) Role of free radicals in the pathogenesis of acute chest syndrome in sickle cell disease. Respir Res 2(5):280–285PubMedCentralPubMedCrossRefGoogle Scholar
  23. Lairon D (2007) Intervention studies on Mediterranean diet and cardiovascular risk. Mol Nutr Food Res 51(10):1209–1214PubMedGoogle Scholar
  24. Leppala JM, Virtamo J, Fogelholm R et al (2000) Controlled trial of alpha-tocopherol and beta-carotene supplements on stroke incidence and mortality in male smokers. Arterioscler Thromb Vasc Biol 20(1):230–235PubMedCrossRefGoogle Scholar
  25. Martin KR, Barrett JC (2002) Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity. Hum Exp Toxicol 21(2):71–75PubMedCrossRefGoogle Scholar
  26. McCord JM, Edeas MA (2005) SOD, oxidative stress and human pathologies: a brief history and a future vision. Biomed Pharmacother 59(4):139–142PubMedGoogle Scholar
  27. Metodiewa D, Jaiswal AK, Cenas N, Dickancaite E, Segura-Aguilar J (1999) Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic Biol Med 26:107–116PubMedCrossRefGoogle Scholar
  28. Misciagna G, De Michele G, Trevisan M (2007) Non enzymatic glycated proteins in the blood and cardiovascular disease. Curr Pharm Des 13(36):3688–3695PubMedCrossRefGoogle Scholar
  29. Mustata GT, Rosca M, Biemel KM, Reihl O, Smith MA, Viswanathan A et al (2005) Paradoxical effects of green tea (Camellia sinensis) and antioxidant vitamins in diabetic rats: improved retinopathy and renal mitochondrial defects but deterioration of collagen matrix glycoxidation and cross-linking. Diabetes 54(2):517–526PubMedCrossRefGoogle Scholar
  30. Omura T (1999) Forty years of cytochrome P450. Biochem Biophy Res Commun 266(3):690–698CrossRefGoogle Scholar
  31. Patel SR, Sigman M (2008) Antioxidant therapy in male infertility. Urol Clin North Am 35(2):319–330PubMedCrossRefGoogle Scholar
  32. Piotrowski WJ, Marczak J (2000) Cellular sources of oxidants in the lung. Int J Occup Med Environ Health 13(4):369–385PubMedGoogle Scholar
  33. Podmore ID, Griffiths HR, Herbert KE, Mistry N, Mistry P, Lunec J (1998) Vitamin C exhibits pro-oxidant properties. Nature 392(6676):559PubMedCrossRefGoogle Scholar
  34. Prieme H, Loft S, Nyyssonen K, Salonen JT, Poulsen HE (1997) No effect of supplementation with vitamin E, ascorbic acid, or coenzyme Q10 on oxidative DNA damage estimated by 8-oxo-7,8-dihydro-2′-deoxyguanosine excretion in smokers. Am J Clin Nutr 65(2):503–507PubMedGoogle Scholar
  35. Rammal H, Bouayed J, Soulimani R (2010) A direct relationship between aggressive behavior in the resident/intruder test and cell oxidative status in adult male mice. Eur J Pharmacol 627(1–3):173–176PubMedCrossRefGoogle Scholar
  36. Ravelojaona V, Péterszegi G, Molinari J, Gesztesi JL, Robert L (2007) Demonstration of the cytotoxic effect of advanced glycation endproducts (AGE-s). J Soc Biol 201(2):185–188PubMedCrossRefGoogle Scholar
  37. Raza H, John A (2005) Green tea polyphenol epigallocatechin-3-gallate differentially modulates oxidative stress in PC12 cell compartments. Toxicol Appl Pharmacol 207(3):212–220PubMedCrossRefGoogle Scholar
  38. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20(7):933–956PubMedCrossRefGoogle Scholar
  39. Sagun KC, Carcamo JM, Golde DW (2005) Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury. FASEB J 19(12):1657–1667CrossRefGoogle Scholar
  40. Sarmadi BH, Ismail A (2010) Antioxidative peptides from food proteins: a review. Peptides 31(10):1949–1956PubMedCrossRefGoogle Scholar
  41. Sheu SS, Nauduri D, Anders MW (2006) Targeting antioxidants to mitochondria: a new therapeutic direction. Biochim Biophys Acta 1762(2):256–265PubMedCrossRefGoogle Scholar
  42. Sies H (2007) Total antioxidant capacity: appraisal of a concept. J Nutr 137:1493–1495PubMedGoogle Scholar
  43. Tatsuta T, Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27(2):306–314PubMedCentralPubMedCrossRefGoogle Scholar
  44. Tremellen K (2008) Oxidative stress and male infertility – a clinical perspective. Hum Reprod Update 14(3):243–258PubMedCrossRefGoogle Scholar
  45. Trinei M, Giorgio M, Cicalese A, Barozzi S, Ventura A, Migliaccio E et al (2002) A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 21(24):3872–3878PubMedCrossRefGoogle Scholar
  46. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84PubMedCrossRefGoogle Scholar
  47. Van Heerebeek L, Meischl C, Stooker W, Meijer CJ, Niessen HW, Roos D (2002) NADPH oxidase(s): new source(s) of reactive oxygen species in the vascular system? J Clin Pathol 55(8):561–568PubMedCentralPubMedCrossRefGoogle Scholar
  48. Wang AL, Yu A, Qi H, Zhu XA, Tso M (2007) AGEs mediated expression and secretion of TNF alpha in rat retinal microglia. Exp Eye Res 84(5):905–913PubMedCrossRefGoogle Scholar
  49. Watjen W, Michels G, Steffan B et al (2005) Low concentrations of flavonoids are protective in rat H4IIE cells whereas high concentrations cause DNA damage and apoptosis. J Nutr 135(3):525–531PubMedGoogle Scholar
  50. Yeh SL, Wang HM, Chen PY, Wu TC (2009) Interactions of beta-carotene and flavonoids on the secretion of pro-inflammatory mediators in an in vitro system. Chem Biol Interact 179(2–3):386–393PubMedCrossRefGoogle Scholar
  51. Yin H (2008) New techniques to detect oxidative stress markers: mass spectrometry-based methods to detect isoprostanes as the gold standard for oxidative stress in vivo. BioFactors (Oxf, Engl) 34(2):109–124CrossRefGoogle Scholar
  52. Yu T, Robotham JL, Yoon Y (2006) Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA 103(8):2653–2658PubMedCentralPubMedCrossRefGoogle Scholar
  53. Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757(5–6):509–517PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute For Antioxidants Applications in Chronic DiseasesInternational Society of Antioxidants in Nutrition and Health, ISANH Antioxidants Task ForceParisFrance

Personalised recommendations