Encyclopedia of Pain

2013 Edition
| Editors: Gerald F. Gebhart, Robert F. Schmidt

Formalin Test

  • Terence J. Coderre
  • Frances V. Abbott
  • Jana Sawynok
Reference work entry
DOI: https://doi.org/10.1007/978-3-642-28753-4_1535



The formalin test refers to the quantification of characteristic nociceptive behaviors that occur in response to subcutaneous (s.c.) or intradermal injection of a dilute solution of formaldehyde in 0.9 % saline, typically into the dorsal or plantar hindpaw of rodents.


The formalin test was originally described by Dubuisson and Dennis (1977) using 50 μl of 5 % formalin injected s.c. into the dorsal surface of one forepaw in rats and cats. “Five percent formalin” consisted of 1 ml of saturated formaldehyde (37 %) in water + 19 ml 0.9 % saline (i.e., 1.85 % formaldehyde). It is now more common to inject between 0.2 % and 5 % formalin into the dorsal or plantar hindpaw, using 20–50 μl in rats or 10–25 μl in mice. Another common site is the lateral aspect of the muzzle, or the temporomandibular joint, in rats, as a model of orofacial pain (Clavelou et al. 1995). The hindpaw has replaced the forepaw...

This is a preview of subscription content, log in to check access.


  1. Abbott, F. V., Franklin, K. B. J., & Westbrook, R. F. (1995). The formalin test: Scoring properties of the first and second phases of the pain response in rats. Pain, 60, 91–102.PubMedGoogle Scholar
  2. Bráz, J. M., & Basbaum, A. I. (2010). Differential ATF3 expression in dorsal root ganglion neurons reveals the profile of primary afferents engaged by diverse chemical stimuli. Pain, 150, 290–301.PubMedGoogle Scholar
  3. Clavelou, P., Dallel, R., Orliaguet, T., Woda, A., & Raboisson, P. (1995). The orofacial formalin test in rats: Effects of different formalin concentrations. Pain, 62, 295–301.PubMedGoogle Scholar
  4. Coderre, T. J. (2001). Noxious stimulus-induced plasticity in spinal cord dorsal horn: Evidence and insights on mechanisms obtained using the formalin test. In M. M. Patterson & J. W. Grau (Eds.), Spinal cord plasticity: Alterations in reflex function (pp. 163–183). Boston: Kluwer Academic.Google Scholar
  5. Coderre, T. J., Fundytus, M. E., McKenna, J. E., Dalal, S., & Melzack, R. (1993). The formalin test: A validation of the weighted-scored method of behavioral pain rating. Pain, 54, 43–50.PubMedGoogle Scholar
  6. Dickenson, A. H., & Sullivan, A. F. (1987). Subcutaneous formalin-induced activity of dorsal horn neurones in the rat: Differential response to an intrathecal opioid administered pre or post formalin. Pain, 30, 349–360.PubMedGoogle Scholar
  7. Dubuisson, D., & Dennis, S. G. (1977). The formalin test: A quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain, 4, 161–174.PubMedGoogle Scholar
  8. Henry, J. L., Yashpal, K., Pitcher, G. M., & Coderre, T. J. (1999). Physiological evidence that the “Interphase” in the formalin test is due to active inhibition. Pain, 82, 57–63.PubMedGoogle Scholar
  9. Hunskaar, S., Fasmer, O. B., & Hole, K. (1985). Formalin test in mice, a useful technique for evaluating mild analgesics. Journal of Neuroscience Methods, 14, 69–76.PubMedGoogle Scholar
  10. Jourdan, D., Ardid, D., & Eschalier, A. (2001). Automated behavioural analysis in animal pain studies. Pharmacological Research, 43, 103–110.PubMedGoogle Scholar
  11. Macpherson, L. J., Xiao, B., Kwan, K. Y., Petrus, M. J., Dubin, A. E., Hwang, S. W., Cravatt, B., Corey, D. P., & Patapoutian, A. (2007). An ion channel essential for sensing chemical damage. The Journal of Neuroscience, 27, 11412–11415.PubMedGoogle Scholar
  12. McNamara, C. R., Mandel-Brehm, J., Bautista, D. M., Siemens, J., Deranian, K. L., Zhao, M., Hayward, N. J., Chong, J. A., Julius, D., Moran, M. M., & Fanger, C. M. (2007). TRPA1 mediates formalin-induced pain. Proceedings of National Academy of Sciences USA, 104, 13525–13530.Google Scholar
  13. Puig, S., & Sorkin, L. S. (1995). Formalin-evoked activity in identified primary afferent fibres: Systemic lidocaine suppresses phase-2 activity. Pain, 64, 345–355.Google Scholar
  14. Sawynok, J., & Liu, X. J. (2003). The formalin test: Characteristics and usefulness of the model. Reviews in Analgesia, 7, 145–163.Google Scholar
  15. Sawynok, J., & Reid, A. R. (2003). Chronic intrathecal cannulas inhibit some and potentiate other behaviors elicited by formalin injection. Pain, 103, 7–9.PubMedGoogle Scholar
  16. Shields, S. D., Cavanaugh, D. J., Lee, H., Anderson, D. J., & Basbaum, A. I. (2010). Pain behavior in the formalin test persists after ablation of the great majority of C-fiber nociceptors. Pain, 151, 422–429.PubMedGoogle Scholar
  17. Taylor, B. K., Peterson, M. A., & Basbaum, A. I. (1995). Persistent cardiovascular and behavioral nociceptive responses to subcutaneous formalin require peripheral nerve input. The Journal of Neuroscience, 15, 7575–7584.PubMedGoogle Scholar
  18. Tjølsen, A., Berge, O. G., Hunskaar, S., Rosland, J. H., & Hole, K. (1992). The formalin test: An evaluation of the method. Pain, 51, 5–17.PubMedGoogle Scholar
  19. Wheeler-Aceto, H., & Cowan, A. (1991). Standardization of the rat paw formalin test for the evaluation of analgesics. Psychopharmacology, 104, 35–44.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Terence J. Coderre
    • 1
  • Frances V. Abbott
    • 2
  • Jana Sawynok
    • 3
  1. 1.Departments of Anesthesia, Neurology & Neurosurgery and PsychologyMcGill UniversityMontrealCanada
  2. 2.Departments of Psychiatry and PsychologyMcGill UniversityMontrealCanada
  3. 3.Department of PharmacologyDalhousie UniversityHalifaxCanada