Encyclopedia of Color Science and Technology

Living Edition
| Editors: Renzo Shamey

Magno-, Parvo-, and Koniocellular Pathways

  • Jasna MartinovicEmail author
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-3-642-27851-8_278-2

Synonyms

Definition

Magno-, parvo-, and koniocellular pathways are the three visual pathways in primates. These pathways are established at the level of the lateral geniculate nucleus (LGN) of the thalamus. They are formed of morphologically distinct cellular layers that receive information from different types of retinal ganglion cells and project to different layers in the primary visual cortex.

Anatomical Considerations

The LGN layers of each of the three visual pathways have a specific cytoarchitectonic structure. The names of the pathways are derived from these structural characteristics [1, 2]. Magnocellular (M) cells have relatively large bodies (lat. Magnus: large), parvocellular (P) cells have smaller bodies (lat. Parvus: small), while koniocellular (K) cells (gr. Konios: dust) are very small.

As can be seen in Fig. 1, structural differences between...
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Lee, B.B., Silveira, L.C.L.: Cone opponency: an efficient way of transmitting chromatic information. In: Kremers, J., Baraas, R.C., Marshall, N.J. (eds.) Human Color Vision. Springer, Char (2016)Google Scholar
  2. 2.
    Hendry, S.H.C., Reid, R.C.: The koniocellular pathway in primate vision. Annu. Rev. Neurosci. 23, 127–153 (2000)CrossRefGoogle Scholar
  3. 3.
    Kremers, J., Silveira, L.C.L., Parry, N.R.A., McKeefry, D.J.: The retinal processing of photoreceptor signals. In: Kremers, J., Baraas, R.C., Marshall, N.J. (eds.) Human Color Vision. Springer, Char (2016)CrossRefGoogle Scholar
  4. 4.
    Stockman, A., Brainard, D.H.: Color vision mechanisms. In: Bass, M. (ed.) OSA Handbook of Optics, 3rd edn, pp. 11.11–11.104. McGraw-Hill, New York (2010)Google Scholar
  5. 5.
    Bishop, G.H.: Fiber groups in the optic nerves. Am. J. Phys. 106, 460–470 (1933)CrossRefGoogle Scholar
  6. 6.
    Casagrande, V.A., Xu, X.: Parallel visual pathways: a comparative perspective. In: Werner, J.S., Chalupa, L.S. (eds.) The New Visual Neurosciences, pp. 494–506. MIT Press, Cambridge (2004)Google Scholar
  7. 7.
    Ungerleider, L.G., Mishkin, M.: Two cortical visual systems. In: Goodale, M.A., Mansfield, R.J.W. (eds.) Analysis of Visual Behavior, pp. 549–586. MIT Press, Cambridge (1982)Google Scholar
  8. 8.
    Livingstone, M.S., Hubel, D.H.: Segregation of form, color, movement and depth: anatomy, physiology and perception. Science. 240, 740–749 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    Conway, B.R., Chatterjee, S., Field, G.D., Horwitz, G.D., Johnson, E.N., Koida, K., Mancuso, K.: Advances in color science: from retina to behavior. J. Neurosci. 30(45), 14955–14963 (2010).  https://doi.org/10.1523/jneurosci.4348-10.2010CrossRefGoogle Scholar
  10. 10.
    Kaplan, E.: The M, P and K pathways of the primate visual system revisited. In: Werner, J.S., Chalupa, L.S. (eds.) The New Visual Neurosciences. MIT Press, Cambridge (2012)Google Scholar
  11. 11.
    Johnson, E.N., Mullen, K.T.: Color in the cortex. In: Kremers, J., Baraas, R.C., Marshall, N.J. (eds.) Human Color Vision. Springer, Char (2016)Google Scholar
  12. 12.
    Buzás, P., Kóbor, P., Petykó, Z., Telkes, I., Martin, P.R., Lénárd, L.: Receptive Field properties of color opponent neurons in the cat lateral geniculate nucleus. J. Neurosci. 33(4), 1451–1461 (2013).  https://doi.org/10.1523/jneurosci.2844-12.2013CrossRefGoogle Scholar
  13. 13.
    Solomon, S.G., Lennie, P.: The machinery of colour vision. Nat. Rev. Neurosci. 8(4), 276–286 (2007).  https://doi.org/10.1038/nrn2094CrossRefGoogle Scholar
  14. 14.
    Lee, B.B.: Visual pathways and psychophysical channels in the primate. J. Physiol.-Lond. 589(1), 41–47 (2011).  https://doi.org/10.1113/jphysiol.2010.192658ADSCrossRefGoogle Scholar
  15. 15.
    Rider, A.T., Henning, G.B., Eskew, R.T., Stockman, A.: Harmonics added to a flickering light can upset the balance between ON and OFF pathways to produce illusory colors. Proc. Natl. Acad. Sci. 115(17), E4081–E4090 (2018).  https://doi.org/10.1073/pnas.1717356115CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2019

Authors and Affiliations

  1. 1.School of PsychologyUniversity of AberdeenAberdeenUK

Section editors and affiliations

  • Rolf Kuehni
    • 1
  1. 1.Color research & applicationPennsvilleUSA