Encyclopedia of Color Science and Technology

Living Edition
| Editors: Renzo Shamey

Ganglion Cells

  • Arne Valberg
  • Jan KremersEmail author
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-3-642-27851-8_276-3

Definition

Retinal ganglion cells are the first real neurons in the visual system, and they transmit the visual information to the brain. The retina processes the visual signals, and they determine the response properties of the retinal ganglion cells and the constraints for color vision.

Physiology of Retinal Ganglion Cells

This entry is only concerned with primate retinal ganglion cells. The morphology and physiology of ganglion cells in other mammals and vertebrates may be quite distinct. Trichromatic theories of color mixture have had a tendency to overemphasize the role that L-, M-, and S-cone receptors have for color perception.The realization, however, that these physiological units can only explain the laws of additive color mixture and color matching (metamerism) has led to an end of this bias. Modern cone-opponent color vision models assume antagonistic inputs of two or more cone types to the receptive field of retinal ganglion cells (e.g., +L-center −M-surround, giving an...

This is a preview of subscription content, log in to check access.

References

  1. 1.
    Wiesel, T.N., Hubel, D.H.: Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29, 1115–1156 (1966)CrossRefGoogle Scholar
  2. 2.
    DeValois, R.L.: Analysis and coding of color in the primate visual system. Cold Spring Harb. Symp. Quant. Biol. 30, 567–579 (1965)CrossRefGoogle Scholar
  3. 3.
    Lee, B.B., Martin, P.R., Valberg, A.: A physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. J. Physiol. 404, 323–347 (1988)CrossRefGoogle Scholar
  4. 4.
    Derrington, A.M., Krauskopf, J., Lennie, P.: Chromatic mechanisms in lateral geniculate nucleus of macaque. J. Physiol. 357, 242–265 (1984)Google Scholar
  5. 5.
    Valberg, A., Seim, T., Lee, B., Tryti, J.: Reconstruction of equidistant color space from responses of visual neurones of macaques. J. Opt. Soc. Am. A3, 1726–1734 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    Dacey, D.M.: The mosaic of midget ganglion cells in the human fovea. J. Neurosci. 13, 5334–5355 (1993)CrossRefGoogle Scholar
  7. 7.
    Wool, L.E., Crook, J.D., Troy, J.B., Packer, O.S., Zaidi, Q., Dacey, D.M.: Nonselective wiring accounts for red-green opponency in midget ganglion cells of the primate retina. J. Neurosci. 38, 1520–1540 (2018).  https://doi.org/10.1523/JNEUROSCI.1688-17.2017CrossRefGoogle Scholar
  8. 8.
    Dacey, D.M., Lee, B.B.: The “blue-on” opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 732–735 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    Hattar, S., Liao, H.W., Takao, M., Berson, D.M., Yau, K.W.: Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Zele, A.J., Feigl, B., Adhikari, P., Maynard, M.L., Cao, D.: Melanopsin photoreception contributes to human visual detection, temporal and colour processing. Sci. Rep. 8, 2842 (2018). https://www.nature.com/articles/s41598-018-22197-wCrossRefGoogle Scholar
  11. 11.
    Valberg, A., Seim, T.: Neural mechanisms of chromatic and achromatic vision. Color. Res. Appl. 33, 433–443 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2020

Authors and Affiliations

  1. 1.Department of PhysicsNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of OphthalmologyUniversity Hospital ErlangenErlangenGermany

Section editors and affiliations

  • Rolf Kuehni
    • 1
  1. 1.Color research & applicationPennsvilleUSA