Encyclopedia of Color Science and Technology

Living Edition
| Editors: Renzo Shamey

Color Synesthesia

Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-3-642-27851-8_112-8



Color synesthesia is a condition in which sensory or cognitive inducers elicit involuntary, atypical, concurrent color experiences.

Marks of Color Synesthesia

Synesthesia is a condition that involves unusual pairings across modalities. In color synesthesia, a sensory or cognitive stimulus such as a grapheme or a sound automatically and involuntarily induces specific color experiences. Various types of color synesthesia have been identified, including calendar-color synesthesia, sound-color synesthesia, taste-color synesthesia, and even fear-color synesthesia. However, the most prevalent form of the condition is grapheme-color synesthesia, where numbers or letters induce highly specific color experiences [1].

One of the marks of grapheme-color synesthesia is that it exhibits test-retest reliability, meaning that the synesthetic colors subjects identify relative to specific stimuli in the initial testing phase are nearly identical to those...
This is a preview of subscription content, log in to check access.


  1. 1.
    Cytowic, R.E., Eagleman, D.M.: Wednesday Is Indigo Blue. MIT Press, Cambridge, MA (2009)Google Scholar
  2. 2.
    Dixon, M.J., Smilek, D.: The importance of individual differences in grapheme-color synesthesia. Neuron. 45, 821–823 (2005)CrossRefGoogle Scholar
  3. 3.
    Dixon, M.J., Smilek, D., Merikle, P.M.: Not all synaesthetes are created equal: projector versus associator synaesthetes. Cogn. Affect. Behav. Neurosci. 4, 335–343 (2004)CrossRefGoogle Scholar
  4. 4.
    Witthoft, N., Winawer, J.: Learning, memory, and synesthesia. Psychol. Sci. 24(3), 258–265 (2013)CrossRefGoogle Scholar
  5. 5.
    Baron-Cohen, S., Harroson, J., Goldstein, L.H., Wyke, M.: Coloured speech perception: is synaesthesia what happens when modularity breaks down? Perception. 22, 419–426 (1993)CrossRefGoogle Scholar
  6. 6.
    Simner, J., Ward, J., Lanz, M., Jansari, A., Noonan, K., Glover, L., et al.: Non-random associations of graphemes to colours in synaesthetic and non-synaesthetic populations. Cogn. Neuropsychol. 22(8), 1069 (2005)CrossRefGoogle Scholar
  7. 7.
    Ramachandran, V.S., Hubbard, E.M.: The emergence of the human mind: some clues from synesthesia. In: Robertson, L.C., Sagiv, N. (eds.) Synesthesia: Perspectives from Cognitive Neuroscience, pp. 147–190. Oxford University Press, Oxford (2005)Google Scholar
  8. 8.
    Smilek, D., Dixon, M.J., Merikle, P.M.: Synaesthetic photisms guide attention. Brain Cogn. 53, 364–367 (2003)CrossRefGoogle Scholar
  9. 9.
    Laeng, B., Svartdal, F., Oelmann, H.: Does color synesthesia pose a paradox for early-selection theories of attention? Psychol. Sci. 15, 277–281 (2004)CrossRefGoogle Scholar
  10. 10.
    Hubbard, E.M., Manohar, S., Ramachandran, V.S.: Contrast affects the strength of synesthetic colors. Cortex. 42, 184–194 (2005)CrossRefGoogle Scholar
  11. 11.
    Blake, R., Palmeri, T.J., Ma mis, R., Kim, C.-Y.: On the perceptual reality of synesthetic color. In: Robertson, L.C., Sagiv, N. (eds.) Synesthesia: Perspectives from Cognitive Neuroscience, pp. 47–73. Oxford University Press, Oxford (2005)Google Scholar
  12. 12.
    Paulesu, E., Harrison, J., Baron-Cohen, S., Watson, J.D.G., Goldstein, L., Heather, J., Frackowiak, R.S.J., Frith, C.D.: The physiology of coloured hearing: A PET activation study of colour-word synaesthesia. Brain. 118, 661–676 (1995)CrossRefGoogle Scholar
  13. 13.
    Segal, G.M.A.: Synaesthesia: implications for modularity of mind. In: Baron-Cohen, S., Harrison, J.E. (eds.) Synaesthesia: Classic and Contemporary Readings, pp. 211–223. Blackwell, Cambridge (1997)Google Scholar
  14. 14.
    Hanggi, J., Wotruba, D., Jäncke, L.: Globally altered structural brain network topology in grapheme-color synesthesia. J. Neurosci. 31, 5816–5828 (2011).  https://doi.org/10.1523/JNEUROSCI.0964-10.2011CrossRefGoogle Scholar
  15. 15.
    Zamm, A., Schlaug, G., Eagleman, D.M., Loui, P.: Pathways to seeing music: enhanced structural connectivity in colored-music synesthesia. NeuroImage. 74, 359–366 (2013).  https://doi.org/10.1016/j.neuroimage.2013.02.024CrossRefGoogle Scholar
  16. 16.
    Ward, J.: Synesthesia. Annu. Rev. Psychol. 64, 4975 (2013)CrossRefGoogle Scholar
  17. 17.
    Grossenbacher, P.G., Lovelace, C.T.: Mechanisms of synesthesia: cognitive and physiological constraints. Trends Cogn. Sci. 5, 36–41 (2001)CrossRefGoogle Scholar
  18. 18.
    Armel, K.C., Ramachandran, V.S.: Acquired synesthesia in retinitis pigmentosa. Neurocase. 5, 293–296 (1999)CrossRefGoogle Scholar
  19. 19.
    Brogaard, B.: Serotonergic hyperactivity as a potential factor in developmental, acquired and drug-induced synesthesia. Front. Hum. Neurosci. 7, 657 (2013).  https://doi.org/10.3389/fnhum.2013.00657CrossRefGoogle Scholar
  20. 20.
    Shanon, B.: Ayahuasca visualizations: a structural typology. J. Conscious. Stud. 9, 3–30 (2002)Google Scholar
  21. 21.
    Brogaard, B., Gatzia, D.E.: Psilocybin, LSD, mescaline and drug-induced synesthesia. In: Preedy, V.R. (ed.) The Neuropathology of Drug Addictions and Substance Misuse, vol. 2, pp. 890–905. Elsevier, New York (2016)CrossRefGoogle Scholar
  22. 22.
    Myles, K.M., Dixon, M.J., Smilek, D., Merikle, P.M.: Seeing double: The role of meaning in alphanumeric-colour synaesthesia. Brain Cogn. 53, 342–345 (2003)CrossRefGoogle Scholar
  23. 23.
    Brogaard, B.: Synesthetic binding and the reactivation model of memory. In: Deroy, O. (ed.) Sensory Blending: On Synaesthesia and Related Phenomena, pp. 126–150. Oxford University Press, Oxford (2017)Google Scholar
  24. 24.
    Brogaard, B., Marlow, K., Rice, K.: The long-term potentiation model for grapheme-color binding in synesthesia. In: Bennett, D., Hill, C. (eds.) Sensory Integration and the Unity of Consciousness, pp. 37–72. MIT Press, Cambridge, MA (2014)Google Scholar
  25. 25.
    Smilek, D., Dixon, M.J., Cudahy, C., Merikle, P.M.: Synesthetic color experiences influence memory. Psychol. Sci. 13(6), 548–552 (2002)CrossRefGoogle Scholar
  26. 26.
    Brogaard, B., Vanni, S., Silvanto, J.: Seeing mathematics: perceptual experience and brain activity in acquired synesthesia. Neurocase. 19(6), 1–10 (2012).  https://doi.org/10.1080/13554794.2012.701646CrossRefGoogle Scholar
  27. 27.
    Mills, C.B., Innis, J., Westendorf, T., Owsianiecki, L., McDonald, A.: Effect of a synesthete’s photisms on name recall. Cortex. 42, 155–163 (2006)CrossRefGoogle Scholar
  28. 28.
    Bor, D., Billington, J., Baron-Cohen, S.: Savant memory for digits in a case of synaesthesia and Asperger syndrome is related to hyperactivity in the lateral prefrontal cortex. Neurocase. 13, 311–319 (2007)CrossRefGoogle Scholar
  29. 29.
    Matey, J.: Can blue mean four? In: Bennett, D., Hill, C. (eds.) Sensory Integration and the Unity of Consciousness, pp. 151–170. MIT Press, Cambridge, MA (2014)Google Scholar
  30. 30.
    Rothen, N., Meier, B.: Higher prevalence of syneasthesia in art students. Perception. 39, 718–720 (2010)CrossRefGoogle Scholar
  31. 31.
    Ward, J., Thompson-Lake, D., Ely, R., Kaminski, F.: Synesthesia, creativity, and art: what is the link? Br. J. Psychol. 99, 127–141 (2008)CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of OsloOsloNorway
  2. 2.Brogaard Lab for Multisensory ResearchUniversity of MiamiMiamiUSA
  3. 3.Department of PhilosophyUniversity of AkronAkronUSA
  4. 4.Department of PhilosophySouthern Methodist UniversityDallasUSA

Section editors and affiliations

  • Rolf Kuehni
    • 1
  1. 1.Color research & applicationPennsvilleUSA