Beyond Evolutionary Trees
Living reference work entry
First Online:
DOI: https://doi.org/10.1007/978-3-642-27848-8_599-1
Years and Authors of Summarized Original Work
2005; Choy, Jansson, Sadakane, Sung
2010; Della Vedova, Dondi, Jiang, Pavesi, Pirola, Wang
2011; Tofigh, Hallett, Lagergren
2011; van Iersel, Kelk
2014; Kelk, Scornavacca
Problem Definition
Recent developments in phylogenetics have provided evidences that evolutionary histories cannot always be represented as a single tree; thus, more sophisticated representations are needed. Phylogenetic networks are natural extensions of phylogenetic trees that recently gathered general consensus in literature. Let Λ be a finite set of labels, representing a set of extant species (taxa). A rooted phylogenetic N over Λ (or, simply, phylogenetic network or network) is a directed acyclic connected graph \(N =\langle V (N),A(N)\rangle\)
Keywords
Phylogenetic networks Consensus networks Lateral gene transferThis is a preview of subscription content, log in to check access.
Recommended Reading
- 1.Bansal MS, Alm EJ, Kellis M (2012) Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12):283–291. doi:10.1093/bioinformatics/bts225CrossRefGoogle Scholar
- 2.Bonizzoni P, Della Vedova G, Dondi R (2005) Reconciling a gene tree to a species tree under the duplication cost model. Theor Comput Sci 347(1–2):36–53. doi:10.1016/j.tcs.2005.05.016MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Burleigh JG, Bansal MS, Wehe A, Eulenstein O (2008) Locating multiple gene duplications through reconciled trees. In: Proceedings of the 12th annual international conference on research in computational molecular biology, RECOMB 2008, Singapore. LNCS, vol 4955. Springer, pp 273–284. doi:10.1007/978-3-540-78839-3_24Google Scholar
- 4.Chang WC, Eulenstein O (2006) Reconciling gene trees with apparent polytomies. In: Proceedings of the 12th annual international conference on computing and combinatorics, COCOON 2006, Taipei. LNCS, vol 4112. Springer, pp 235–244. doi:10.1007/11809678_26Google Scholar
- 5.Chauve C, El-Mabrouk N (2009) New perspectives on gene family evolution: losses in reconciliation and a link with supertrees. In: Proceedings of the 13th annual international conference on research in computational molecular biology, RECOMB 2009, Tucson. LNCS, vol 5541. Springer, pp 46–58. doi:10.1007/978-3-642-02008-7_4Google Scholar
- 6.Choy C, Jansson J, Sadakane K, Sung WK (2005) Computing the maximum agreement of phylogenetic networks. Theor Comput Sci 335(1):93–107. doi:10.1016/j.tcs.2004.12.012MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Della Vedova G, Dondi R, Jiang T, Pavesi G, Pirola Y, Wang L (2010) Beyond evolutionary trees. Nat Comput 9(2):421–435. doi:10.1007/s11047-009-9156-6MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Gambette P, Berry V, Paul C (2012) Quartets and unrooted phylogenetic networks. J Bioinform Comput Biol 10(4). doi:10.1142/S0219720012500047CrossRefGoogle Scholar
- 9.Goodman M, Czelusniak J, Moore GW, Romero-Herrera AE, Matsuda G (1979) Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst Zool 28(2):132–163. doi:10.1093/sysbio/28.2.132CrossRefGoogle Scholar
- 10.Gòrecki P (2004) Reconciliation problems for duplication, loss and horizontal gene transfer. In: Proceedings of the 8th annual international conference on computational molecular biology, RECOMB 2004, San Diego. ACM, pp 316–325. doi:10.1145/974614.974656Google Scholar
- 11.Gòrecki P, Tiuryn J (2006) DLS-trees: a model of evolutionary scenarios. Theor Comput Sci 359(1–3):378–399. doi:10.1016/j.tcs.2006.05.019CrossRefzbMATHGoogle Scholar
- 12.Guigò R, Muchnik I, Smith T (1996) Reconstruction of ancient molecular phylogeny. Mol Phylogenet Evol 6(2):189–213. doi:10.1006/mpev.1996.0071CrossRefGoogle Scholar
- 13.Gusfield D, Eddhu S, Langley CH (2004) Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. J Bioinform Comput Biol 2(1):173–214. doi:10.1142/S0219720004000521CrossRefGoogle Scholar
- 14.Habib M, To TH (2012) Constructing a minimum phylogenetic network from a dense triplet set. J Bioinform Comput Biol 10(5). doi:10.1142/S0219720012500138CrossRefGoogle Scholar
- 15.Huson DH, Klöpper TH (2007) Beyond galled trees – decomposition and computation of galled networks. In: Proceedings of the 11th annual international conference on research in computational molecular biology, RECOMB 2007, Oakland. LNCS, vol 4453. Springer, pp 211–225. doi:10.1007/978-3-540-71681-5_15Google Scholar
- 16.Huson DH, Rupp R (2008) Summarizing multiple gene trees using cluster networks. In: Proceedings of the 8th international workshop on algorithms in bioinformatics, WABI 2008, Karlsruhe. LNCS, vol 5251. Springer, pp 296–305. doi:10.1007/978-3-540-87361-7_25Google Scholar
- 17.Jansson J, Sung WK (2004) The maximum agreement of two nested phylogenetic networks. In: Proceedings of the 15th international symposium on algorithms and computation, ISAAC 2004, Hong Kong. LNCS, vol 3341. Springer, pp 581–593. doi:10.1007/978-3-540-30551-4_51Google Scholar
- 18.Jansson J, Nguyen NB, Sung WK (2006) Algorithms for combining rooted triplets into a galled phylogenetic network. SIAM J Comput 35(5):1098–1121. doi:10.1137/S0097539704446529MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Kelk S, Scornavacca C (2014) Constructing minimal phylogenetic networks from softwired clusters is fixed parameter tractable. Algorithmica 68(4):886–915. doi:10.1007/s00453-012-9708-5MathSciNetCrossRefGoogle Scholar
- 20.Libeskind-Hadas R, Charleston MA (2009) On the computational complexity of the reticulate cophylogeny reconstruction problem. J Comput Biol 16(1):105–117. doi:10.1089/ cmb.2008.0084MathSciNetCrossRefGoogle Scholar
- 21.Ma B, Li M, Zhang L (2000) From gene trees to species trees. SIAM J Comput 30(3):729–752. doi:10.1137/S0097539798343362MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Ovadia Y, Fielder D, Conow C, Libeskind-Hadas R (2011) The cophylogeny reconstruction problem is NP-complete. J Comput Biol 18(1):59–65. doi:10.1089/cmb.2009.0240MathSciNetCrossRefGoogle Scholar
- 23.Page R (1994) Maps between trees and cladistic analysis of historical associations among genes. Syst Biol 43(1):58–77. doi:10.1093/sysbio/43.1.58Google Scholar
- 24.To TH, Habib M (2009) Level-k phylogenetic networks are constructable from a dense triplet set in polynomial time. In: Proceedings of the 20th annual symposium on combinatorial pattern matching, CPM 2009, Lille. LNCS, vol 5577. Springer, pp 275–288. doi:10.1007/978-3-642-02441-2_25Google Scholar
- 25.Tofigh A, Hallett MT, Lagergren J (2011) Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans Comput Biol Bioinform 8(2):517–535. doi:10.1109/TCBB.2010.14CrossRefGoogle Scholar
- 26.van Iersel L, Kelk S (2011) Constructing the simplest possible phylogenetic network from triplets. Algorithmica 60(2):207–235. doi:10.1007/s00453-009-9333-0MathSciNetCrossRefzbMATHGoogle Scholar
- 27.van Iersel L, Keijsper J, Kelk S, Stougie L, Hagen F, Boekhout T (2009) Constructing level-2 phylogenetic networks from triplets. IEEE/ACM Trans Comput Biol Bioinform 6(4):667–681. doi:10.1145/1671403.1671415CrossRefGoogle Scholar
- 28.van Iersel L, Kelk S, Mnich M (2009) Uniqueness, intractability and exact algorithms: reflections on level-k phylogenetic networks. J Bioinform Comput Biol 7(4):597–623. doi:10.1142/S0219720009004308CrossRefGoogle Scholar
- 29.van Iersel L, Kelk S, Rupp R, Huson D (2010) Phylogenetic networks do not need to be complex: using fewer reticulations to represent conflicting clusters. Bioinformatics 26(12):i124–i131. doi:10.1093/bioinformatics/btq202CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 2014