Encyclopedia of Algorithms

Living Edition
| Editors: Ming-Yang Kao

Triangulation Data Structures

  • Luca Castelli Aleardi
  • Olivier Devillers
  • Jarek Rossignac
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27848-8_589-1

Years and Authors of Summarized Original Work

2008; Castelli Aleardi, Devillers, Schaeffer

2009; Gurung, Rossignac

2012; Castelli Aleardi, Devillers, Rossignac

Problem Definition

The main problem consists in designing space-efficient data structures allowing to represent the connectivity of triangle meshes while supporting fast navigation and local updates.

Mesh Structures: Definition

Triangle meshes are among the most common representations of shapes. A triangle mesh is a collection of triangle faces that define a polyhedral approximation of a surface. A mesh is manifold if every edge is bounding either one or two triangles and if the faces incident to a same vertex define a closed or open fan. Here we focus on manifold meshes. Assuming that the genus and the number of boundary edges are negligible when compared to the number n of vertices, the number m of faces is roughly equal to 2n.

Data Structures: Classification

Mesh data structures can be compared with respect to several...

Keywords

Triangulations Triangle meshes Compact data structures Succinct representations 
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Blanford D, Blelloch G, Kash I (2003) Compact representations of separable graphs. In: SODA, Baltimore, pp 342–351. http://dl.acm.org/citation.cfm?id=644219
  2. 2.
    Boissonnat JD, Devillers O, Pion S, Teillaud M, Yvinec M (2002) Triangulations in CGAL. Comput Geom 22:5–19. doi:http://dx.doi.org/10.1145/336154.336165Google Scholar
  3. 3.
    Castelli Aleardi L, Devillers O (2011) Explicit array-based compact data structures for triangulations. In: ISAAC, Yokohama, pp 312–322. doi:http://dx.doi.org/10.1007/978-3-642-25591-5_33Google Scholar
  4. 4.
    Castelli Aleardi L, Devillers O, Schaeffer G (2005) Succinct representation of triangulations with a boundary. In: WADS, Waterloo, pp 134–145. doi:http://dx.doi.org/10.1007/11534273_13Google Scholar
  5. 5.
    Castelli Aleardi L, Devillers O, Schaeffer G (2008) Succinct representations of planar maps. Theor Comput Sci 408(2–3):174–187. doi:http://dx.doi.org/10.1016/j.tcs.2008.08.016Google Scholar
  6. 6.
    Castelli Aleardi L, Devillers O, Mebarki A (2011) Catalog based representation of 2D triangulations. Int J Comput Geom Appl 21(4):393–402. doi:http://dx.doi.org/10.1142/S021819591100372XGoogle Scholar
  7. 7.
    Castelli Aleardi L, Devillers O, Rossignac J (2012) ESQ: editable squad representation for triangle meshes. In: SIBGRAPI, Ouro Preto, pp 110–117. doi:http://dx.doi.org/10.1109/SIBGRAPI.2012.24Google Scholar
  8. 8.
    Gurung T, Rossignac J (2009) SOT: compact representation for tetrahedral meshes. In: Proceedings of the ACM symposium on solid and physical modeling, San Francisco, pp 79–88. doi:http://dx.doi.org/10.1145/1629255.1629266Google Scholar
  9. 9.
    Gurung T, Laney D, Lindstrom P, Rossignac J (2011) SQUAD: compact representation for triangle meshes. Comput Graph Forum 30(2):355–364. doi:http://dx.doi.org/10.1111/j.1467-8659.2011.01866.xGoogle Scholar
  10. 10.
    Gurung T, Luffel M, Lindstrom P, Rossignac J (2011) LR: compact connectivity representation for triangle meshes. ACM Trans Graph 30(4):67. doi:http://dx.doi.org/10.1145/2010324.1964962Google Scholar
  11. 11.
    Gurung T, Luffel M, Lindstrom P, Rossignac J (2013) Zipper: a compact connectivity data structure for triangle meshes. Comput-Aided Des 45(2):262–269. doi:http://dx.doi.org/10.1016/j.cad.2012.10.009Google Scholar
  12. 12.
    Luffel M, Gurung T, Lindstrom P, Rossignac J (2014) Grouper: a compact, streamable triangle mesh data structure. IEEE Trans Vis Comput Graph 20(1):84–98. doi:http://dx.doi.org/10.1109/TVCG.2013.81Google Scholar
  13. 13.
    Poulalhon D, Schaeffer G (2006) Optimal coding and sampling of triangulations. Algorithmica 46:505–527. doi:http://dx.doi.org/10.1007/s00453-006-0114-8Google Scholar
  14. 14.
    Schnyder W (1990) Embedding planar graphs on the grid. In: SODA, San Francisco, 138–148. http://dl.acm.org/citation.cfm?id=320191

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Luca Castelli Aleardi
    • 1
  • Olivier Devillers
    • 2
  • Jarek Rossignac
    • 3
  1. 1.Laboratoire d’Informatique (LIX)École Polytechnique, Bâtiment Alan TuringPalaiseauFrance
  2. 2.INRIANancyFrance
  3. 3.Georgia Institute of TechnologyAtlanta, GAUSA