Skip to main content

Abelian Hidden Subgroup Problem

  • Living reference work entry
  • First Online:
  • 295 Accesses

Years and Authors of Summarized Original Work

1995, Kitaev;

2008, Mosca

Problem Definition

The Abelian hidden subgroup problem is the problem of finding generators for a subgroup K of an Abelian group G, where this subgroup is defined implicitly by a function \(f : G \rightarrow X\), for some finite set X. In particular, f has the property that f(v) = f(w) if and only if the cosets (we are assuming additive notation for the group operation here.) v + K and w + K are equal. In other words, f is constant on the cosets of the subgroup K and distinct on each coset.

It is assumed that the group G is finitely generated and that the elements of G and X have unique binary encodings. The binary assumption is only for convenience, but it is important to have unique encodings (e.g., in [22] Watrous uses a quantum state as the unique encoding of group elements). When using variables g and h (possibly with subscripts), multiplicative notation is used for the group operations. Variables x and y...

This is a preview of subscription content, log in via an institution.

Recommended Reading

  1. Boneh D, Lipton R (1995) Quantum cryptanalysis of hidden linear functions (extended abstract). In: Proceedings of 15th Annual International Cryptology Conference (CRYPTO’95), Santa Barbara, pp 424–437

    Google Scholar 

  2. Cheung K, Mosca M (2001) Decomposing finite Abelian groups. Quantum Inf Comput 1(2):26–32

    MATH  MathSciNet  Google Scholar 

  3. Childs AM, Ivanyos G (2014) Quantum computation of discrete logarithms in semigroups. J Math Cryptol 8(4):405–416

    Article  MATH  MathSciNet  Google Scholar 

  4. Childs AM, Jao D, Soukharev V (2010) Constructing elliptic curve isogenies in quantum subexponential time. preprint. arXiv:1012.4019

    Google Scholar 

  5. Cleve R, Ekert A, Macchiavello C, Mosca M (1998) Quantum algorithms revisited. Proc R Soc Lond A 454:339–354

    Article  MATH  MathSciNet  Google Scholar 

  6. Deutsch D (1985) Quantum theory, the Church-Turing principle and the universal quantum computer. Proc R Soc Lond A 400:97–117

    Article  MATH  MathSciNet  Google Scholar 

  7. Deutsch D, Jozsa R (1992) Rapid solutions of problems by quantum computation. Proc R Soc Lond Ser A 439:553–558

    Article  MATH  MathSciNet  Google Scholar 

  8. Ettinger M, Høyer P, Knill E (2004) The quantum query complexity of the hidden subgroup problem is polynomial. Inf Process Lett 91:43–48

    Article  MATH  Google Scholar 

  9. Friedl K, Ivanyos G, Santha M (2005) Efficient testing of groups. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC’05), Baltimore, pp 157–166

    Google Scholar 

  10. Grigoriev D (1997) Testing shift-equivalence of polynomials by deterministic, probabilistic and quantum machines. Theor Comput Sci 180:217–228

    Article  MATH  MathSciNet  Google Scholar 

  11. Høyer P (1999) Conjugated operators in quantum algorithms. Phys Rev A 59(5):3280–3289

    Article  MathSciNet  Google Scholar 

  12. Kaye P, Laflamme R, Mosca M (2007) An introduction to quantum computation. Oxford University Press, Oxford, UK

    Google Scholar 

  13. Kedlaya KS (2006) Quantum computation of zeta functions of curves. Comput Complex 15:1–19

    Article  MATH  MathSciNet  Google Scholar 

  14. Kitaev A (1995) Quantum measurements and the Abelian stabilizer problem. quant-ph/9511026

    Google Scholar 

  15. Kitaev A (1996) Quantum measurements and the Abelian stabilizer problem. In: Electronic Colloquium on Computational Complexity (ECCC), vol 3. http://eccc.hpi-web.de/report/1996/003/

  16. Kitaev A. Yu (1997) Quantum computations: algorithms and error correction. Russ Math Surv 52(6):1191–1249

    Article  MATH  Google Scholar 

  17. Mosca M, Ekert A (1998) The hidden subgroup problem and eigenvalue estimation on a quantum computer. In: Proceedings 1st NASA International Conference on Quantum Computing & Quantum Communications, Palm Springs. Lecture notes in computer science, vol 1509. Springer, Berlin, pp 174–188

    Google Scholar 

  18. Shor P (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS’94), Santa Fe, pp 124–134

    Google Scholar 

  19. Shor P (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput 26:1484–1509

    Article  MATH  MathSciNet  Google Scholar 

  20. Simon D (1994) On the power of quantum computation. In: Proceedings of the 35th IEEE Symposium on the Foundations of Computer Science (FOCS’94), Santa Fe, pp 116–123

    Google Scholar 

  21. Simon D (1997) On the power of quantum computation. SIAM J Comput 26:1474–1483

    Article  MATH  MathSciNet  Google Scholar 

  22. Watrous J (2000) Quantum algorithms for solvable groups. In: Proceedings of the 33rd ACM Symposium on Theory of Computing (STOC’00), Portland, pp 60–67

    Google Scholar 

  23. Vazirani U (1997) Berkeley lecture notes. Fall. Lecture 8. http://www.cs.berkeley.edu/~vazirani/qc.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Mosca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Mosca, M. (2015). Abelian Hidden Subgroup Problem. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27848-8_1-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27848-8_1-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27848-8

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics