Encyclopedia of Algorithms

Living Edition
| Editors: Ming-Yang Kao

Abelian Hidden Subgroup Problem

  • Michele MoscaEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27848-8_1-2

Years and Authors of Summarized Original Work

1995, Kitaev;

2008, Mosca

Problem Definition

The Abelian hidden subgroup problem is the problem of finding generators for a subgroup K of an Abelian group G, where this subgroup is defined implicitly by a function \(f : G \rightarrow X\)

Keywords

Abelian hidden subgroup problem Abelian stabilizer problem Quantum algorithms Quantum complexity Quantum computing 
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Boneh D, Lipton R (1995) Quantum cryptanalysis of hidden linear functions (extended abstract). In: Proceedings of 15th Annual International Cryptology Conference (CRYPTO’95), Santa Barbara, pp 424–437Google Scholar
  2. 2.
    Cheung K, Mosca M (2001) Decomposing finite Abelian groups. Quantum Inf Comput 1(2):26–32zbMATHMathSciNetGoogle Scholar
  3. 3.
    Childs AM, Ivanyos G (2014) Quantum computation of discrete logarithms in semigroups. J Math Cryptol 8(4):405–416zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Childs AM, Jao D, Soukharev V (2010) Constructing elliptic curve isogenies in quantum subexponential time. preprint. arXiv:1012.4019Google Scholar
  5. 5.
    Cleve R, Ekert A, Macchiavello C, Mosca M (1998) Quantum algorithms revisited. Proc R Soc Lond A 454:339–354zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Deutsch D (1985) Quantum theory, the Church-Turing principle and the universal quantum computer. Proc R Soc Lond A 400:97–117zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Deutsch D, Jozsa R (1992) Rapid solutions of problems by quantum computation. Proc R Soc Lond Ser A 439:553–558zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Ettinger M, Høyer P, Knill E (2004) The quantum query complexity of the hidden subgroup problem is polynomial. Inf Process Lett 91:43–48zbMATHCrossRefGoogle Scholar
  9. 9.
    Friedl K, Ivanyos G, Santha M (2005) Efficient testing of groups. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC’05), Baltimore, pp 157–166Google Scholar
  10. 10.
    Grigoriev D (1997) Testing shift-equivalence of polynomials by deterministic, probabilistic and quantum machines. Theor Comput Sci 180:217–228zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Høyer P (1999) Conjugated operators in quantum algorithms. Phys Rev A 59(5):3280–3289MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kaye P, Laflamme R, Mosca M (2007) An introduction to quantum computation. Oxford University Press, Oxford, UKGoogle Scholar
  13. 13.
    Kedlaya KS (2006) Quantum computation of zeta functions of curves. Comput Complex 15:1–19zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Kitaev A (1995) Quantum measurements and the Abelian stabilizer problem. quant-ph/9511026Google Scholar
  15. 15.
    Kitaev A (1996) Quantum measurements and the Abelian stabilizer problem. In: Electronic Colloquium on Computational Complexity (ECCC), vol 3. http://eccc.hpi-web.de/report/1996/003/
  16. 16.
    Kitaev A. Yu (1997) Quantum computations: algorithms and error correction. Russ Math Surv 52(6):1191–1249zbMATHCrossRefGoogle Scholar
  17. 17.
    Mosca M, Ekert A (1998) The hidden subgroup problem and eigenvalue estimation on a quantum computer. In: Proceedings 1st NASA International Conference on Quantum Computing & Quantum Communications, Palm Springs. Lecture notes in computer science, vol 1509. Springer, Berlin, pp 174–188Google Scholar
  18. 18.
    Shor P (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS’94), Santa Fe, pp 124–134Google Scholar
  19. 19.
    Shor P (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput 26:1484–1509zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Simon D (1994) On the power of quantum computation. In: Proceedings of the 35th IEEE Symposium on the Foundations of Computer Science (FOCS’94), Santa Fe, pp 116–123Google Scholar
  21. 21.
    Simon D (1997) On the power of quantum computation. SIAM J Comput 26:1474–1483zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Watrous J (2000) Quantum algorithms for solvable groups. In: Proceedings of the 33rd ACM Symposium on Theory of Computing (STOC’00), Portland, pp 60–67Google Scholar
  23. 23.
    Vazirani U (1997) Berkeley lecture notes. Fall. Lecture 8. http://www.cs.berkeley.edu/~vazirani/qc.html

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Combinatorics and Optimization/Institute for Quantum ComputingUniversity of WaterlooWaterloo,ONCanada
  2. 2.Perimeter Institute for Theoretical PhysicsWaterloo,ONCanada
  3. 3.Canadian Institute for Advanced ResearchToronto,ONCanada