Pediatric Obstructive Uropathy

Living reference work entry

Abstract

Congenital obstructive uropathy is a heterogeneous group of pathologies with a varying natural history. Obstruction of the urinary tract can be at the level of the ureteropelvic or the ureterovesical junction or at the level of the bladder outlet or urethra. It can be either unilateral or bilateral and it may involve some or all of the urinary tract. Congenital obstructive uropathy represents a major cause of renal failure in infants and children. Together with renal hypoplasia and dysplasia, it accounts for almost half of all cases of chronic kidney diseases in children.

Keywords

Vesicoureteral Reflux Ureteral Obstruction Obstructive Uropathy Posterior Urethral Valve Urinary Tract Obstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rodriguez MM. Congenital anomalies of the kidney and the urinary tract (CAKUT). Fetal Pediatr Pathol. 2014;33:293–320.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Morris RK, Kilby MD. Congenital urinary tract obstruction. Best Pract Res Clin Obstet Gynaecol. 2008;22:97–122.PubMedCrossRefGoogle Scholar
  3. 3.
    Lee RS, Cendron M, Kinnamon DD, Nguyen HT. Antenatal hydronephrosis as a predictor of postnatal outcome: a meta-analysis. Pediatrics. 2006;118:586–93.PubMedCrossRefGoogle Scholar
  4. 4.
    Ek S, Lidefeldt KJ, Varricio L. Fetal hydronephrosis; prevalence, natural history and postnatal consequences in an unselected population. Acta Obstet Gynecol Scand. 2007;86:1463–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Wiesel A, Queisser-Luft A, Clementi M, Bianca S, Stoll C. Prenatal detection of congenital renal malformations by fetal ultrasonographic examination: an analysis of 709,030 births in 12 European countries. Eur J Med Genet. 2005;48:131–44.PubMedCrossRefGoogle Scholar
  6. 6.
    Anumba DO, Scott JE, Plant ND, Robson SC. Diagnosis and outcome of fetal lower urinary tract obstruction in the northern region of England. Prenat Diagn. 2005;25:7–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Bullock KN, Whitaker RH. Does good upper tract compliance preserve renal function. J Urol. 1984;131:914–16.PubMedGoogle Scholar
  8. 8.
    Koff SA, Peller PA. Diagnostic criteria for assessing obstruction in the newborn with unilateral hydronephrosis using the renal growth-renal function chart. J Urol. 1995;154:662–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Koff SA, McDowell GC, Byard M. Diuretic radionuclide assessment of obstruction in the infant: guidelines for successful interpretation. J Urol. 1988;140:1167–8.PubMedGoogle Scholar
  10. 10.
    Peters CA. Urinary tract obstruction in children. J Urol. 1995;154:1874–83.PubMedCrossRefGoogle Scholar
  11. 11.
    Truong LD, Gaber L, Eknoyan G. Obstructive uropathy. Contrib Nephrol. 2011;169:311–26.PubMedCrossRefGoogle Scholar
  12. 12.
    Klein J, Gonzalez J, Miravete M, et al. Congenital ureteropelvic junction obstruction: human disease and animal models. Int J Exp Pathol. 2011;92:168–92.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Chevalier RL, Thornhill BA, Forbes MS, Kiley SC. Mechanisms of renal injury and progression of renal disease in congenital obstructive nephropathy. Pediatr Nephrol. 2010;25:687–97.PubMedCrossRefGoogle Scholar
  14. 14.
    Truong LD, Petrusevska G, Yang G, et al. Cell apoptosis and proliferation in experimental chronic obstructive uropathy. Kidney Int. 1996;50:200–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Gobe GC, Axelsen RA. Genesis of renal tubular atrophy in experimental hydronephrosis in the rat. Role of apoptosis. Lab Invest. 1987;56:273–81.PubMedGoogle Scholar
  16. 16.
    Iwano M, Plieth D, Danoff TM, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002;110:341–50.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Lange-Sperandio B, Trautmann A, Eickelberg O, et al. Leukocytes induce epithelial to mesenchymal transition after unilateral ureteral obstruction in neonatal mice. Am J Pathol. 2007;171:861–71.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Thornhill BA, Forbes MS, Marcinko ES, Chevalier RL. Glomerulotubular disconnection in neonatal mice after relief of partial ureteral obstruction. Kidney Int. 2007;72:1103–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Pedersen TS, Hvistendahl JJ, Djurhuus JC, Frokiaer J. Renal water and sodium handling during gradated unilateral ureter obstruction. Scand J Urol Nephrol. 2002;36:163–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Li C, Wang W, Kwon TH, et al. Altered expression of major renal Na transporters in rats with bilateral ureteral obstruction and release of obstruction. Am J Physiol Renal Physiol. 2003;285:F889–901.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang G, Ring T, Li C, et al. Unilateral ureteral obstruction alters expression of acid–base transporters in rat kidney. J Urol. 2009;182:2964–73.PubMedCrossRefGoogle Scholar
  22. 22.
    Giachelli CM, Lombardi D, Johnson RJ, Murry CE, Almeida M. Evidence for a role of osteopontin in macrophage infiltration in response to pathological stimuli in vivo. Am J Pathol. 1998;152:353–8.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Wada T, Furuichi K, Sakai N, et al. Gene therapy via blockade of monocyte chemoattractant protein-1 for renal fibrosis. J Am Soc Nephrol. 2004;15:940–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Lange-Sperandio B, Cachat F, Thornhill BA, Chevalier RL. Selectins mediate macrophage infiltration in obstructive nephropathy in newborn mice. Kidney Int. 2002;61:516–24.PubMedCrossRefGoogle Scholar
  25. 25.
    Shappell SB, Mendoza LH, Gurpinar T, et al. Expression of adhesion molecules in kidney with experimental chronic obstructive uropathy: the pathogenic role of ICAM-1 and VCAM-1. Nephron. 2000;85:156–66.PubMedCrossRefGoogle Scholar
  26. 26.
    Yoo KH, Thornhill BA, Forbes MS, et al. Osteopontin regulates renal apoptosis and interstitial fibrosis in neonatal chronic unilateral ureteral obstruction. Kidney Int. 2006;70:1735–41.PubMedCrossRefGoogle Scholar
  27. 27.
    Rouschop KM, Sewnath ME, Claessen N, et al. CD44 deficiency increases tubular damage but reduces renal fibrosis in obstructive nephropathy. J Am Soc Nephrol. 2004;15:674–86.PubMedCrossRefGoogle Scholar
  28. 28.
    Fan YY, Nishiyama A, Fujisawa Y, et al. Contribution of chymase-dependent angiotensin II formation to the progression of tubulointerstitial fibrosis in obstructed kidneys in hamsters. J Pharmacol Sci. 2009;111:82–90.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Satoh M, Kashihara N, Yamasaki Y, et al. Renal interstitial fibrosis is reduced in angiotensin II type 1a receptor-deficient mice. J Am Soc Nephrol. 2001;12:317–25.PubMedGoogle Scholar
  30. 30.
    Esteban V, Lorenzo O, Ruperez M, et al. Angiotensin II, via AT1 and AT2 receptors and NF-kappaB pathway, regulates the inflammatory response in unilateral ureteral obstruction. J Am Soc Nephrol. 2004;15:1514–29.PubMedCrossRefGoogle Scholar
  31. 31.
    Lange-Sperandio B, Schimpgen K, Rodenbeck B, et al. Distinct roles of Mac-1 and its counter-receptors in neonatal obstructive nephropathy. Kidney Int. 2006;69:81–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Gasparitsch M, Arndt AK, Pawlitschek F, et al. RAGE-mediated interstitial fibrosis in neonatal obstructive nephropathy is independent of NF-kappaB activation. Kidney Int. 2013;84:911–19.PubMedCrossRefGoogle Scholar
  33. 33.
    Nishida M, Hamaoka K. Macrophage phenotype and renal fibrosis in obstructive nephropathy. Nephron Exp Nephrol. 2008;110:e31–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Wang Y, Harris DC. Macrophages in renal disease. J Am Soc Nephrol. 2011;22:21–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Lin SL, Castano AP, Nowlin BT, Lupher Jr ML, Duffield JS. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J Immunol. 2009;183:6733–43.PubMedCrossRefGoogle Scholar
  36. 36.
    Anders HJ, Ryu M. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int. 2011;80:915–25.PubMedCrossRefGoogle Scholar
  37. 37.
    Grande MT, Lopez-Novoa JM. Fibroblast activation and myofibroblast generation in obstructive nephropathy. Nat Rev Nephrol. 2009;5:319–28.PubMedCrossRefGoogle Scholar
  38. 38.
    Wada T, Sakai N, Matsushima K, Kaneko S. Fibrocytes: a new insight into kidney fibrosis. Kidney Int. 2007;72:269–73.PubMedCrossRefGoogle Scholar
  39. 39.
    Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol. 2008;19:2282–7.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Lin SL, Kisseleva T, Brenner DA, Duffield JS. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol. 2008;173:1617–27.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Gao X, Mae H, Ayabe N, et al. Hepatocyte growth factor gene therapy retards the progression of chronic obstructive nephropathy. Kidney Int. 2002;62:1238–48.PubMedCrossRefGoogle Scholar
  42. 42.
    Yang J, Liu Y. Delayed administration of hepatocyte growth factor reduces renal fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol. 2003;284:F349–57.PubMedCrossRefGoogle Scholar
  43. 43.
    Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis: the role of bone morphogenic protein-7 and hepatocyte growth factor. Kidney Int. 2003;64 suppl 87:S105–12.CrossRefGoogle Scholar
  44. 44.
    Sakairi T, Hiromura K, Yamashita S, et al. Nestin expression in the kidney with an obstructed ureter. Kidney Int. 2007;72:307–18.PubMedCrossRefGoogle Scholar
  45. 45.
    Sharma AK, Mauer SM, Kim Y, Michael AF. Interstitial fibrosis in obstructive nephropathy. Kidney Int. 1993;44:774–88.PubMedCrossRefGoogle Scholar
  46. 46.
    Macdonald MS, Emery JL. The late intrauterine and postnatal development of human renal glomeruli. J Anat. 1959;93:331–40.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Song R, Yosypiv IV. Genetics of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol. 2011;26:353–64.PubMedCrossRefGoogle Scholar
  48. 48.
    Chevalier RL, Forbes MS, Galarreta CI, Thornhill BA. Responses of proximal tubular cells to injury in congenital renal disease: fight or flight. Pediatr Nephrol. 2014;29:537–41.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Forbes MS, Thornhill BA, Galarreta CI, et al. Chronic unilateral ureteral obstruction in the neonatal mouse delays maturation of both kidneys and leads to late formation of atubular glomeruli. Am J Physiol Renal Physiol. 2013;305:F1736–46.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Ito K, Chen J, El CM, et al. Renal damage progresses despite improvement of renal function after relief of unilateral ureteral obstruction in adult rats. Am J Physiol Renal Physiol. 2004;287:F1283–93.PubMedCrossRefGoogle Scholar
  51. 51.
    Chevalier RL, Thornhill BA, Chang AY, Cachat F, Lackey A. Recovery from release of ureteral obstruction in the rat: relationship to nephrogenesis. Kidney Int. 2002;61:2033–43.PubMedCrossRefGoogle Scholar
  52. 52.
    Huang WY, Peters CA, Zurakowski D, et al. Renal biopsy in congenital ureteropelvic junction obstruction: evidence for parenchymal maldevelopment. Kidney Int. 2006;69:137–43.PubMedCrossRefGoogle Scholar
  53. 53.
    Chevalier RL. Pathogenesis of renal injury in obstructive uropathy. Curr Opin Pediatr. 2006;18:153–60.PubMedCrossRefGoogle Scholar
  54. 54.
    Harrison MR, Ross N, Noall R, de Lorimier AA. Correction of congenital hydronephrosis in utero I. The model: fetal urethral obstruction produces hydronephrosis and pulmonary hypoplasia in fetal lambs. J Pediatr Surg. 1983;18:247–56.PubMedCrossRefGoogle Scholar
  55. 55.
    Harrison MR, Nakayama DK, Noall R, de Lorimier AA. Correction of congenital hydronephrosis in utero II. Decompression reverses the effects of obstruction on the fetal lung and urinary tract. J Pediatr Surg. 1982;17:965–74.PubMedCrossRefGoogle Scholar
  56. 56.
    Glick PL, Harrison MR, Halks-Miller M, et al. Correction of congenital hydrocephalus in utero II: efficacy of in utero shunting. J Pediatr Surg. 1984;19:870–81.PubMedCrossRefGoogle Scholar
  57. 57.
    Glick PL, Harrison MR, Adzick NS, Noall RA, Villa RL. Correction of congenital hydronephrosis in utero IV: in utero decompression prevents renal dysplasia. J Pediatr Surg. 1984;19:649–57.PubMedCrossRefGoogle Scholar
  58. 58.
    Bascands JL, Schanstra JP. Obstructive nephropathy: insights from genetically engineered animals. Kidney Int. 2005;68:925–37.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Skarnes WC, Rosen B, West AP, et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. 2011;474:337–42.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Stuart RO, Bush KT, Nigam SK. Changes in global gene expression patterns during development and maturation of the rat kidney. Proc Natl Acad Sci U S A. 2001;98:5649–54.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Rumballe B, Georgas K, Wilkinson L, Little M. Molecular anatomy of the kidney: what have we learned from gene expression and functional genomics? Pediatr Nephrol. 2010;25:1005–16.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Duell BL, Carey AJ, Tan CK, et al. Innate transcriptional networks activated in bladder in response to uropathogenic Escherichia coli drive diverse biological pathways and rapid synthesis of IL-10 for defense against bacterial urinary tract infection. J Immunol. 2012;188:781–92.PubMedCrossRefGoogle Scholar
  63. 63.
    Tan CK, Carey AJ, Cui X, et al. Genome-wide mapping of cystitis due to Streptococcus agalactiae and Escherichia coli in mice identifies a unique bladder transcriptome that signifies pathogen-specific antimicrobial defense against urinary tract infection. Infect Immun. 2012;80:3145–60.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Rasouly HM, Lu W. Lower urinary tract development and disease. Wiley Interdiscip Rev Syst Biol Med. 2013;5:307–42.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    McDill BW, Li SZ, Kovach PA, Ding L, Chen F. Congenital progressive hydronephrosis (cph) is caused by an S256L mutation in aquaporin-2 that affects its phosphorylation and apical membrane accumulation. Proc Natl Acad Sci U S A. 2006;103:6952–7.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Nguyen HT, Herndon CD, Cooper C, et al. The Society for Fetal Urology consensus statement on the evaluation and management of antenatal hydronephrosis. J Pediatr Urol. 2010;6:212–31.PubMedCrossRefGoogle Scholar
  67. 67.
    Mendelsohn C. Functional obstruction: the renal pelvis rules. J Clin Invest. 2004;113:957–9.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Batourina E, Choi C, Paragas N, et al. Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat Genet. 2002;32:109–15.PubMedCrossRefGoogle Scholar
  69. 69.
    Batourina E, Tsai S, Lambert S, et al. Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat Genet. 2005;37:1082–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Chia I, Grote D, Marcotte M, et al. Nephric duct insertion is a crucial step in urinary tract maturation that is regulated by a Gata3-Raldh2-Ret molecular network in mice. Development. 2011;138:2089–97.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Uetani N, Bertozzi K, Chagnon MJ, et al. Maturation of ureter-bladder connection in mice is controlled by LAR family receptor protein tyrosine phosphatases. J Clin Invest. 2009;119:924–35.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Hu P, Deng FM, Liang FX, et al. Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux. J Cell Biol. 2000;151:961–72.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Kong XT, Deng FM, Hu P, et al. Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases. J Cell Biol. 2004;167:1195–204.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Iizuka-Kogo A, Ishidao T, Akiyama T, Senda T. Abnormal development of urogenital organs in Dlgh1-deficient mice. Development. 2007;134:1799–807.PubMedCrossRefGoogle Scholar
  75. 75.
    Mahoney ZX, Sammut B, Xavier RJ, et al. Discs-large homolog 1 regulates smooth muscle orientation in the mouse ureter. Proc Natl Acad Sci U S A. 2006;103:19872–7.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Martin E, Caubit X, Airik R, et al. TSHZ3 and SOX9 regulate the timing of smooth muscle cell differentiation in the ureter by reducing myocardin activity. PLoS One. 2013;8:e63721.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Caubit X, Lye CM, Martin E, et al. Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development. 2008;135:3301–10.PubMedCrossRefGoogle Scholar
  78. 78.
    Yu J, Carroll TJ, McMahon AP. Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development. 2002;129:5301–12.PubMedGoogle Scholar
  79. 79.
    Cain JE, Islam E, Haxho F, Blake J, Rosenblum ND. GLI3 repressor controls functional development of the mouse ureter. J Clin Invest. 2011;121:1199–206.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Miyazaki Y, Oshima K, Fogo A, Hogan BL, Ichikawa I. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest. 2000;105:863–73.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Brenner-Anantharam A, Cebrian C, Guillaume R, et al. Tailbud-derived mesenchyme promotes urinary tract segmentation via BMP4 signaling. Development. 2007;134:1967–75.PubMedCrossRefGoogle Scholar
  82. 82.
    Tripathi P, Wang Y, Casey AM, Chen F. Absence of canonical Smad signaling in ureteral and bladder mesenchyme causes ureteropelvic junction obstruction. J Am Soc Nephrol. 2012;23:618–28.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Trowe MO, Airik R, Weiss AC, et al. Canonical Wnt signaling regulates smooth muscle precursor development in the mouse ureter. Development. 2012;139:3099–108.PubMedCrossRefGoogle Scholar
  84. 84.
    Airik R, Bussen M, Singh MK, Petry M, Kispert A. Tbx18 regulates the development of the ureteral mesenchyme. J Clin Invest. 2006;116:663–74.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Mendelsohn C. Going in circles: conserved mechanisms control radial patterning in the urinary and digestive tracts. J Clin Invest. 2006;116:635–7.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Lye CM, Fasano L, Woolf AS. Ureter myogenesis: putting Teashirt into context. J Am Soc Nephrol. 2010;21:24–30.PubMedCrossRefGoogle Scholar
  87. 87.
    David SG, Cebrian C, Vaughan Jr ED, Herzlinger D. c-kit and ureteral peristalsis. J Urol. 2005;173:292–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Chang CP, McDill BW, Neilson JR, et al. Calcineurin is required in urinary tract mesenchyme for the development of the pyeloureteral peristaltic machinery. J Clin Invest. 2004;113:1051–8.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Hurtado R, Bub G, Herzlinger D. The pelvis-kidney junction contains HCN3, a hyperpolarization-activated cation channel that triggers ureter peristalsis. Kidney Int. 2010;77:500–8.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Herzlinger D. Upper urinary tract pacemaker cells join the GLI club. J Clin Invest. 2011;121:836–8.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Johnston JJ, Olivos-Glander I, Killoran C, et al. Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am J Hum Genet. 2005;76:609–22.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Kang S, Graham Jr JM, Olney AH, Biesecker LG. GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nat Genet. 1997;15:266–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Pallister PD, Hecht F, Herrman J. Three additional cases of the congenital hypothalamic “hamartoblastoma” (Pallister-Hall) syndrome. Am J Med Genet. 1989;33:500–1.PubMedCrossRefGoogle Scholar
  94. 94.
    Miyazaki Y, Tsuchida S, Nishimura H, et al. Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest. 1998;102:1489–97.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Gribouval O, Gonzales M, Neuhaus T, et al. Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet. 2005;37:964–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Gubler MC, Antignac C. Renin-angiotensin system in kidney development: renal tubular dysgenesis. Kidney Int. 2010;77:400–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Nie X, Sun J, Gordon RE, Cai CL, Xu PX. SIX1 acts synergistically with TBX18 in mediating ureteral smooth muscle formation. Development. 2010;137:755–65.PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Chatterjee R, Ramos E, Hoffman M, et al. Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations. Hum Genet. 2012;131:1725–38.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Davis TK, Hoshi M, Jain S. To bud or not to bud: the RET perspective in CAKUT. Pediatr Nephrol. 2014;29:597–608.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Hoshi M, Batourina E, Mendelsohn C, Jain S. Novel mechanisms of early upper and lower urinary tract patterning regulated by RetY1015 docking tyrosine in mice. Development. 2012;139:2405–15.PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Hanafusa H, Torii S, Yasunaga T, Nishida E. Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol. 2002;4:850–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Basson MA, Akbulut S, Watson-Johnson J, et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell. 2005;8:229–39.PubMedCrossRefGoogle Scholar
  103. 103.
    Rozen EJ, Schmidt H, Dolcet X, et al. Loss of Sprouty1 rescues renal agenesis caused by Ret mutation. J Am Soc Nephrol. 2009;20:255–9.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Maeshima A, Sakurai H, Choi Y, et al. Glial cell-derived neurotrophic factor independent ureteric bud outgrowth from the Wolffian duct. J Am Soc Nephrol. 2007;18:3147–55.PubMedCrossRefGoogle Scholar
  105. 105.
    Michos O, Cebrian C, Hyink D, et al. Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet. 2006;6:e1000809.CrossRefGoogle Scholar
  106. 106.
    Pastorelli LM, Wells S, Fray M, et al. Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract. Mamm Genome. 2009;20:140–51.PubMedCrossRefGoogle Scholar
  107. 107.
    Reidy KJ, Rosenblum ND. Cell and molecular biology of kidney development. Semin Nephrol. 2009;29:321–37.PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Schutz S, Le Moullec JM, Corvol P, Gasc JM. Early expression of all the components of the renin-angiotensin-system in human development. Am J Pathol. 1996;149:2067–79.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Yosypiv IV. Renin-angiotensin system in ureteric bud branching morphogenesis: implications for kidney disease. Pediatr Nephrol. 2014;29:609–20.PubMedCrossRefGoogle Scholar
  110. 110.
    Yosypiv IV. Renin-angiotensin system-growth factor cross-talk: a novel mechanism for ureteric bud morphogenesis. Pediatr Nephrol. 2009;24:1113–20.PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Oshima K, Miyazaki Y, Brock III JW, et al. Angiotensin type II receptor expression and ureteral budding. J Urol. 2001;166:1848–52.PubMedCrossRefGoogle Scholar
  112. 112.
    Nishimura H, Yerkes E, Hohenfellner K, et al. Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell. 1999;3:1–10.PubMedCrossRefGoogle Scholar
  113. 113.
    Hohenfellner K, Hunley TE, Brezinska R, et al. ACE I/D gene polymorphism predicts renal damage in congenital uropathies. Pediatr Nephrol. 1999;13:514–18.PubMedCrossRefGoogle Scholar
  114. 114.
    Hahn H, Ku SE, Kim KS, et al. Implication of genetic variations in congenital obstructive nephropathy. Pediatr Nephrol. 2005;20:1541–4.PubMedCrossRefGoogle Scholar
  115. 115.
    Rigoli L, Chimenz R, di BC, et al. Angiotensin-converting enzyme and angiotensin type 2 receptor gene genotype distributions in Italian children with congenital uropathies. Pediatr Res. 2004;56:988–93.PubMedCrossRefGoogle Scholar
  116. 116.
    Stankovic A, Zivkovic M, Kostic M, et al. Expression profiling of the AT2R mRNA in affected tissue from children with CAKUT. Clin Biochem. 2010;43:71–5.PubMedCrossRefGoogle Scholar
  117. 117.
    Cordell HJ, Darlay R, Charoen P, et al. Whole-genome linkage and association scan in primary, nonsyndromic vesicoureteric reflux. J Am Soc Nephrol. 2010;21:113–23.PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Peruzzi L, Lombardo F, Amore A, et al. Low renin-angiotensin system activity gene polymorphism and dysplasia associated with posterior urethral valves. J Urol. 2005;174:713–17.PubMedCrossRefGoogle Scholar
  119. 119.
    Bianchi D, Vespasiani G, Bove P. Acute kidney injury due to bilateral ureteral obstruction in children. World J Nephrol. 2014;3:182–92.PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    Thom RP, Rosenblum ND. A translational approach to congenital non-obstructive hydronephrosis. Pediatr Nephrol. 2013;28:1757–61.PubMedCrossRefGoogle Scholar
  121. 121.
    Rodriguez MM. Developmental renal pathology: its past, present, and future. Fetal Pediatr Pathol. 2004;23:211–29.PubMedCrossRefGoogle Scholar
  122. 122.
    Casella DP, Tomaszewski JJ, Ost MC. Posterior urethral valves: renal failure and prenatal treatment. Int J Nephrol. 2012;2012:351067.PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Morris RK, Malin GL, Quinlan-Jones E, et al. Percutaneous vesicoamniotic shunting versus conservative management for fetal lower urinary tract obstruction (PLUTO): a randomised trial. Lancet. 2013;382:1496–506.PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    Klein J, Lacroix C, Caubet C, et al. Fetal urinary peptides to predict postnatal outcome of renal disease in fetuses with posterior urethral valves (PUV). Sci Transl Med. 2013;5:198ra106.PubMedCrossRefGoogle Scholar
  125. 125.
    Crombleholme TM, Harrison MR, Golbus MS, et al. Fetal intervention in obstructive uropathy: prognostic indicators and efficacy of intervention. Am.J. Obstet Gynecol. 1990;162:1239–44.Google Scholar
  126. 126.
    Glick PL, Harrison MR, Golbus MS, et al. Management of the fetus with congenital hydronephrosis II: prognostic criteria and selection for treatment. J Pediatr Surg. 1985;20:376–87.PubMedCrossRefGoogle Scholar
  127. 127.
    Lipitz S, Ryan G, Samuell C, et al. Fetal urine analysis for the assessment of renal function in obstructive uropathy. Am J Obstet Gynecol. 1993;168:174–9.PubMedCrossRefGoogle Scholar
  128. 128.
    Morris RK, Quinlan-Jones E, Kilby MD, Khan KS. Systematic review of accuracy of fetal urine analysis to predict poor postnatal renal function in cases of congenital urinary tract obstruction. Prenat Diagn. 2007;27:900–11.PubMedCrossRefGoogle Scholar
  129. 129.
    Lissauer D, Morris RK, Kilby MD. Fetal lower urinary tract obstruction. Semin Fetal Neonatal Med. 2007;12:464–70.PubMedCrossRefGoogle Scholar
  130. 130.
    Ismaili K, Avni FE, Wissing KM, Hall M. Long-term clinical outcome of infants with mild and moderate fetal pyelectasis: validation of neonatal ultrasound as a screening tool to detect significant nephrouropathies. J Pediatr. 2004;144:759–65.PubMedGoogle Scholar
  131. 131.
    Riccabona M. Obstructive diseases of the urinary tract in children: lessons from the last 15 years. Pediatr Radiol. 2010;40:947–55.PubMedCrossRefGoogle Scholar
  132. 132.
    Arthurs OJ, van Rijn RR, Sebire NJ. Current status of paediatric post-mortem imaging: an ESPR questionnaire-based survey. Pediatr Radiol. 2014;44:244–51.PubMedCrossRefGoogle Scholar
  133. 133.
    Arlen AM, Merriman LS, Kirsch JM et al. Early effect of American academy of pediatrics UTI guidelines on radiographic imaging and diagnosis of vesicoureteral reflux in the emergency room setting. J Urol. 2014, [Epub ahead of print].Google Scholar
  134. 134.
    Taylor AT. Radionuclides in nephrourology, Part 2: pitfalls and diagnostic applications. J Nucl Med. 2014;55:786–98.PubMedCentralPubMedCrossRefGoogle Scholar
  135. 135.
    Taylor AT. Radionuclides in nephrourology, part 1: radiopharmaceuticals, quality control, and quantitative indices. J Nucl Med. 2014;55:608–15.PubMedCentralPubMedCrossRefGoogle Scholar
  136. 136.
    Taylor AT, Blaufox MD, De PD, et al. Guidance document for structured reporting of diuresis renography. Semin Nucl Med. 2012;42:41–8.PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Liu Y, Ghesani NV, Skurnick JH, Zuckier LS. The F + 0 protocol for diuretic renography results in fewer interrupted studies due to voiding than the F – 15 protocol. J Nucl Med. 2005;46:1317–20.PubMedGoogle Scholar
  138. 138.
    Piepsz A, Ham HR. Pediatric applications of renal nuclear medicine. Semin Nucl Med. 2006;36:16–35.PubMedCrossRefGoogle Scholar
  139. 139.
    Kuyvenhoven J, Piepsz A, Ham H. When could the administration of furosemide be avoided? Clin Nucl Med. 2003;28:732–7.PubMedCrossRefGoogle Scholar
  140. 140.
    Piepsz A, Colarinha P, Gordon I, et al. Guidelines for 99mTc-DMSA scintigraphy in children. Eur J Nucl Med. 2001;28:BP37–41.PubMedGoogle Scholar
  141. 141.
    Rossleigh MA. Renal infection and vesico-ureteric reflux. Semin Nucl Med. 2007;37:261–8.PubMedCrossRefGoogle Scholar
  142. 142.
    Weyer K, Nielsen R, Petersen SV, et al. Renal uptake of 99mTc-dimercaptosuccinic acid is dependent on normal proximal tubule receptor-mediated endocytosis. J Nucl Med. 2013;54:159–65.PubMedCrossRefGoogle Scholar
  143. 143.
    Johnston RB, Porter C. The Whitaker test. Urol J. 2014;11:1727–30.PubMedGoogle Scholar
  144. 144.
    Airik R, Kispert A. Down the tube of obstructive nephropathies: the importance of tissue interactions during ureter development. Kidney Int. 2007;72:1459–67.PubMedCrossRefGoogle Scholar
  145. 145.
    Deng FM, Liang FX, Tu L, et al. Uroplakin IIIb, a urothelial differentiation marker, dimerizes with uroplakin Ib as an early step of urothelial plaque assembly. J Cell Biol. 2002;159:685–94.PubMedCentralPubMedCrossRefGoogle Scholar
  146. 146.
    Baker LA, Gomez RA. Embryonic development of the ureter and bladder: acquisition of smooth muscle. J Urol. 1998;160:545–50.PubMedCrossRefGoogle Scholar
  147. 147.
    Lang RJ, Tonta MA, Zoltkowski BZ, et al. Pyeloureteric peristalsis: role of atypical smooth muscle cells and interstitial cells of Cajal-like cells as pacemakers. J Physiol. 2006;576:695–705.PubMedCentralPubMedCrossRefGoogle Scholar
  148. 148.
    Lang RJ, Hashitani H, Tonta MA, et al. Spontaneous electrical and Ca2+ signals in the mouse renal pelvis that drive pyeloureteric peristalsis. Clin Exp Pharmacol Physiol. 2010;37:509–15.PubMedCrossRefGoogle Scholar
  149. 149.
    Metzger R, Schuster T, Till H, et al. Cajal-like cells in the human upper urinary tract. J Urol. 2004;172:769–72.PubMedCrossRefGoogle Scholar
  150. 150.
    Di BA, Arena S, Nicotina PA, et al. Pacemakers in the upper urinary tract. Neurourol Urodyn. 2013;32:349–53.CrossRefGoogle Scholar
  151. 151.
    Lang RJ, Hashitani H, Tonta MA, Parkington HC, Suzuki H. Spontaneous electrical and Ca2+ signals in typical and atypical smooth muscle cells and interstitial cell of Cajal-like cells of mouse renal pelvis. J Physiol. 2007;583:1049–68.PubMedCentralPubMedCrossRefGoogle Scholar
  152. 152.
    Weisschuh N, Wolf C, Wissinger B, Gramer E. A novel mutation in the FOXC1 gene in a family with Axenfeld-Rieger syndrome and Peters’ anomaly. Clin Genet. 2008;74:476–80.PubMedCrossRefGoogle Scholar
  153. 153.
    Yu S, Shao L, Kilbride H, Zwick DL. Haploinsufficiencies of FOXF1 and FOXC2 genes associated with lethal alveolar capillary dysplasia and congenital heart disease. Am J Med Genet A. 2010;152A:1257–62.PubMedCrossRefGoogle Scholar
  154. 154.
    Astorga J, Carlsson P. Hedgehog induction of murine vasculogenesis is mediated by Foxf1 and Bmp4. Development. 2007;134:3753–61.PubMedCrossRefGoogle Scholar
  155. 155.
    de WD, Dik P, Lilien MR, Kok ET, de Jong TP. Hypertension is an indication for surgery in children with ureteropelvic junction obstruction. J Urol. 2008;179:1976–8.CrossRefGoogle Scholar
  156. 156.
    Farnham SB, Adams MC, Brock III JW, Pope JC. Pediatric urological causes of hypertension. J Urol. 2005;173:697–704.PubMedCrossRefGoogle Scholar
  157. 157.
    Cheng AM, Phan V, Geary DF, Rosenblum ND. Outcome of isolated antenatal hydronephrosis. Arch Pediatr Adolesc Med. 2004;158:38–40.PubMedCrossRefGoogle Scholar
  158. 158.
    Thom RP, Rosenblum ND. A translational approach to congenital non-obstructive hydronephrosis. Pediatr Nephrol. 2013;28:1757–61.PubMedCrossRefGoogle Scholar
  159. 159.
    Chertin B, Pollack A, Koulikov D, et al. Conservative treatment of ureteropelvic junction obstruction in children with antenatal diagnosis of hydronephrosis: lessons learned after 16 years of follow-up. Eur Urol. 2006;49:734–8.PubMedCrossRefGoogle Scholar
  160. 160.
    Lee RS, Retik AB, Borer JG, Peters CA. Pediatric robot assisted laparoscopic dismembered pyeloplasty: comparison with a cohort of open surgery. J Urol. 2006;175:683–7.PubMedCrossRefGoogle Scholar
  161. 161.
    Olsen LH, Jorgensen TM. Computer assisted pyeloplasty in children: the retroperitoneal approach. J Urol. 2004;171:2629–31.PubMedCrossRefGoogle Scholar
  162. 162.
    Peters CA. Pediatric robot-assisted pyeloplasty. J Endourol. 2011;25:179–85.PubMedCrossRefGoogle Scholar
  163. 163.
    Sutherland RW, Chung SK, Roth DR, Gonzales ET. Pediatric pyeloplasty: outcome analysis based on patient age and surgical technique. Urology. 1997;50:963–6.PubMedCrossRefGoogle Scholar
  164. 164.
    Chevalier RL. Biomarkers of congenital obstructive nephropathy: past, present and future. J Urol. 2004;172:852–7.PubMedCrossRefGoogle Scholar
  165. 165.
    Carr MC, Peters CA, Retik AB, Mandell J. Urinary levels of the renal tubular enzyme N-acetyl-beta-d-glucosaminidase in unilateral obstructive uropathy. J Urol. 1994;151:442–5.PubMedGoogle Scholar
  166. 166.
    El-Sherbiny MT, Mousa OM, Shokeir AA, Ghoneim MA. Role of urinary transforming growth factor-beta1 concentration in the diagnosis of upper urinary tract obstruction in children. J Urol. 2002;168:1798–800.PubMedCrossRefGoogle Scholar
  167. 167.
    Valles PG, Pascual L, Manucha W, Carrizo L, Ruttler M. Role of endogenous nitric oxide in unilateral ureteropelvic junction obstruction in children. Kidney Int. 2003;63:1104–15.PubMedCrossRefGoogle Scholar
  168. 168.
    Bartoli F, Penza R, Aceto G, et al. Urinary epidermal growth factor, monocyte chemotactic protein-1, and beta2-microglobulin in children with ureteropelvic junction obstruction. J Pediatr Surg. 2011;46:530–6.PubMedCrossRefGoogle Scholar
  169. 169.
    Taranta-Janusz K, Wasilewska A, Debek W, Filonowicz R, Michaluk-Skutnik J. Urinary angiotensinogen as a novel marker of obstructive nephropathy in children. Acta Paediatr. 2013;102:e429–33.PubMedCrossRefGoogle Scholar
  170. 170.
    Decramer S, Wittke S, Mischak H, et al. Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis. Nat Med. 2006;12:398–400.PubMedCrossRefGoogle Scholar
  171. 171.
    Drube J, Zurbig P, Schiffer E, et al. Urinary proteome analysis identifies infants but not older children requiring pyeloplasty. Pediatr Nephrol. 2010;25:1673–8.PubMedCrossRefGoogle Scholar
  172. 172.
    Papachristou F, Pavlaki A, Printza N. Urinary and serum biomarkers in ureteropelvic junction obstruction: a systematic review. Biomarkers. 2014;19:531–40.PubMedCrossRefGoogle Scholar
  173. 173.
    Alberti C. Congenital ureteropelvic junction obstruction: physiopathology, decoupling of tout court pelvic dilatation-obstruction semantic connection, biomarkers to predict renal damage evolution. Eur Rev Med Pharmacol Sci. 2012;16:213–19.PubMedGoogle Scholar
  174. 174.
    Boubaker A, Prior JO, Meyrat B, et al. Unilateral ureteropelvic junction obstruction in children: long-term followup after unilateral pyeloplasty. J Urol. 2003;170:575–9.PubMedCrossRefGoogle Scholar
  175. 175.
    Han SW, Lee SE, Kim JH, et al. Does delayed operation for pediatric ureteropelvic junction obstruction cause histopathological changes? J Urol. 1998;160:984–8.PubMedCrossRefGoogle Scholar
  176. 176.
    Bandin F, Siwy J, Breuil B, et al. Urinary proteome analysis at 5-year followup of patients with nonoperated ureteropelvic junction obstruction suggests ongoing kidney remodeling. J Urol. 2012;187:1006–11.PubMedCrossRefGoogle Scholar
  177. 177.
    Mackie GG, Awang H, Stephens FD. The ureteric orifice: the embryologic key to radiologic status of duplex kidneys. J Pediatr Surg. 1975;10:473–81.PubMedCrossRefGoogle Scholar
  178. 178.
    Grieshammer U, Le M, Plump AS, et al. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell. 2004;6:709–17.PubMedCrossRefGoogle Scholar
  179. 179.
    Kume T, Deng K, Hogan BL. Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development. 2000;127:1387–95.PubMedGoogle Scholar
  180. 180.
    Hains DS, Sims-Lucas S, Carpenter A, et al. High incidence of vesicoureteral reflux in mice with Fgfr2 deletion in kidney mesenchyma. J Urol. 2010;183:2077–84.PubMedCentralPubMedCrossRefGoogle Scholar
  181. 181.
    Murawski IJ, Gupta IR. Vesicoureteric reflux and renal malformations: a developmental problem. Clin Genet. 2006;69:105–17.PubMedCrossRefGoogle Scholar
  182. 182.
    Wang H, Li Q, Liu J, et al. Noninvasive assessment of antenatal hydronephrosis in mice reveals a critical role for Robo2 in maintaining anti-reflux mechanism. PLoS One. 2011;6:e24763.PubMedCentralPubMedCrossRefGoogle Scholar
  183. 183.
    Uetani N, Bouchard M. Plumbing in the embryo: developmental defects of the urinary tracts. Clin Genet. 2009;75:307–17.PubMedCrossRefGoogle Scholar
  184. 184.
    Routh JC, Huang L, Retik AB, Nelson CP. Contemporary epidemiology and characterization of newborn males with prune belly syndrome. Urology. 2010;76:44–8.PubMedCrossRefGoogle Scholar
  185. 185.
    Hassett S, Smith GH, Holland AJ. Prune belly syndrome. Pediatr Surg Int. 2012;28:219–28.PubMedCrossRefGoogle Scholar
  186. 186.
    Haeri S, Devers PL, Kaiser-Rogers KA, et al. Deletion of hepatocyte nuclear factor-1-beta in an infant with prune belly syndrome. Am J Perinatol. 2010;27:559–63.PubMedCrossRefGoogle Scholar
  187. 187.
    Murray PJ, Thomas K, Mulgrew CJ, et al. Whole gene deletion of the hepatocyte nuclear factor-1beta gene in a patient with the prune-belly syndrome. Nephrol Dial Transplant. 2008;23:2412–15.PubMedCrossRefGoogle Scholar
  188. 188.
    Weber S, Thiele H, Mir S, et al. Muscarinic acetylcholine receptor M3 mutation causes urinary bladder disease and a Prune-Belly-like Syndrome. Am J Hum Genet. 2011;89:668–74.PubMedCentralPubMedCrossRefGoogle Scholar
  189. 189.
    Farrugia MK, Woolf AS. Congenital urinary bladder outlet obstruction. Fetal Maternal Med Rev. 2010;21(1):55–73.CrossRefGoogle Scholar
  190. 190.
    Park JM. Normal development of the genitourinary tract. In: Weinberg A, editor. Campbell-Walsh urology. Philadelphia: Elsevier-Saunders; 2012. p. 2975–3001.CrossRefGoogle Scholar
  191. 191.
    Woolf AS, Winyard PJ, Hermanns MM, Welham SJ. Maldevelopment of the human kidney and lower urinary tract: an overview. In: Vize PD, Woolf AS, Bard JBL, editors. The kidney: from normal development to congenital disease. London: Academic; 2003. p. 377–93.CrossRefGoogle Scholar
  192. 192.
    Nasir AA, Ameh EA, Abdur-Rahman LO, Adeniran JO, Abraham MK. Posterior urethral valve. World J Pediatr. 2011;7:205–16.PubMedCrossRefGoogle Scholar
  193. 193.
    Frohneberg DH, Thuroff JW, Riedmiller H. Posterior urethral valves: theoretical considerations on embryological development. Eur Urol. 1982;8:325–8.PubMedGoogle Scholar
  194. 194.
    Krishnan A, De SA, Konijeti R, Baskin LS. The anatomy and embryology of posterior urethral valves. J Urol. 2006;175:1214–20.PubMedCrossRefGoogle Scholar
  195. 195.
    Lowsley OS. Congenital malformation of the posterior urethra. Ann Surg. 1914;60:733–41.PubMedCentralPubMedCrossRefGoogle Scholar
  196. 196.
    Borzi PA, Beasley SW, Fowler R. Posterior urethral valves in non-twin siblings. Br J Urol. 1992;70:201.PubMedCrossRefGoogle Scholar
  197. 197.
    Golbus MS, Harrison MR, Filly RA, Callen PW, Katz M. In utero treatment of urinary tract obstruction. Am J Obstet Gynecol. 1982;142:383–8.PubMedGoogle Scholar
  198. 198.
    Morris RK, Kilby MD. Long-term renal and neurodevelopmental outcome in infants with LUTO, with and without fetal intervention. Early Hum Dev. 2011;87:607–10.PubMedCrossRefGoogle Scholar
  199. 199.
    Freedman AL, Johnson MP, Gonzalez R. Fetal therapy for obstructive uropathy: past, present.future? Pediatr Nephrol. 2000;14:167–76.PubMedCrossRefGoogle Scholar
  200. 200.
    Hennus PM, van der Heijden GJ, Bosch JL, de Jong TP, de Kort LM. A systematic review on renal and bladder dysfunction after endoscopic treatment of infravesical obstruction in boys. PLoS One. 2012;7:e44663.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Dr. v. Hauner Children’s Hospital, Department of Pediatric Nephrology, LMUMunichGermany

Personalised recommendations