Vesicoureteral Reflux and Renal Scarring in Children

Living reference work entry

Abstract

Vesicoureteral reflux (VUR) is the most common congenital anomaly of the urinary tract. The gold standard for diagnosing VUR is a voiding cystourethrogram (VCUG). According to the International Reflux Grading Scheme, the severity of VUR is classified as grade I–V. It is diagnosed in 30–40 % of children with a urinary tract infection (UTI). VUR may be an isolated abnormality (primary VUR) or it may occur in association with other congenital anomalies of the kidney and urinary tract (CAKUT), including renal dysplasia and obstructive uropathy. VUR may also be noted secondary to bladder dysfunction such as neurogenic bladder or other obstructive anomalies (e.g., posterior urethral valves) (secondary VUR). An increasing number of children with VUR are being diagnosed during follow-up for antenatally diagnosed renal abnormalities and no preexisting history of UTI. Renal scarring associated with VUR is called reflux nephropathy (RN). RN is categorized as “congenital,” which is a result of abnormal renal development leading to focal renal dysplasia, or “acquired” as a result of pyelonephritis-induced renal injury. Complications of RN in pediatric patients include proteinuria, hypertension, and end-stage renal failure (ESRF).

Keywords

Urinary Tract Infection Vesicoureteral Reflux Recurrent Urinary Tract Infection Renal Scarring Antimicrobial Prophylaxis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ransley PG. Vesicoureteric reflux: continuing surgical dilemma. Urology. 1978;12(3):246–55.PubMedGoogle Scholar
  2. 2.
    Smellie J, et al. Vesico-ureteric reflux and renal scarring. Kidney Int Suppl. 1975;4:S65–72.PubMedGoogle Scholar
  3. 3.
    Wennerstrom M, et al. Disappearance of vesicoureteral reflux in children. Arch Pediatr Adolesc Med. 1998;152(9):879–83.PubMedGoogle Scholar
  4. 4.
    Dick PT, Feldman W. Routine diagnostic imaging for childhood urinary tract infections: a systematic overview. J Pediatr. 1996;128(1):15–22.PubMedGoogle Scholar
  5. 5.
    Arant Jr BS. Medical management of mild and moderate vesicoureteral reflux: followup studies of infants and young children. A preliminary report of the Southwest Pediatric Nephrology Study Group. J Urol. 1992;148(5 Pt 2):1683–7.PubMedGoogle Scholar
  6. 6.
    Rolleston GL, Shannon FT, Utley WL. Follow-up of vesico-ureteric reflux in the newborn. Kidney Int Suppl. 1975;4:S59–64.PubMedGoogle Scholar
  7. 7.
    Rolleston GL, Shannon FT, Utley WL. Relationship of infantile vesicoureteric reflux to renal damage. Br Med J. 1970;1(694):460–3.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Skoog SJ, Belman AB, Majd M. A nonsurgical approach to the management of primary vesicoureteral reflux. J Urol. 1987;138(4 Pt 2):941–6.PubMedGoogle Scholar
  9. 9.
    Dwoskin JY, Perlmutter AD. Vesicoureteral reflux in children: a computerized review. J Urol. 1973;109(5):888–90.PubMedGoogle Scholar
  10. 10.
    Scott JE. The management of ureteric reflux in children. Br J Urol. 1977;49(2):109–18.PubMedGoogle Scholar
  11. 11.
    Snodgrass W. The impact of treated dysfunctional voiding on the nonsurgical management of vesicoureteral reflux. J Urol. 1998;160(5):1823–5.PubMedGoogle Scholar
  12. 12.
    Marra G, et al. Congenital renal damage associated with primary vesicoureteral reflux detected prenatally in male infants. J Pediatr. 1994;124(5 Pt 1):726–30.PubMedGoogle Scholar
  13. 13.
    Askari A, Belman AB. Vesicoureteral reflux in black girls. J Urol. 1982;127(4):747–8.PubMedGoogle Scholar
  14. 14.
    Kunin CM. A ten-year study of bacteriuria in schoolgirls: final report of bacteriologic, urologic, and epidemiologic findings. J Infect Dis. 1970;122(5):382–93.PubMedGoogle Scholar
  15. 15.
    Skoog SJ, Belman AB. Primary vesicoureteral reflux in the black child. Pediatrics. 1991;87(4):538–43.PubMedGoogle Scholar
  16. 16.
    Hoberman A, et al. Antimicrobial prophylaxis for children with vesicoureteral reflux. N Engl J Med. 2014;370(25):2367–76.PubMedGoogle Scholar
  17. 17.
    Chand DH, et al. Incidence and severity of vesicoureteral reflux in children related to age, gender, race and diagnosis. J Urol. 2003;170(4 Pt 2):1548–50.PubMedGoogle Scholar
  18. 18.
    Dixon JS, et al. The structure and autonomic innervation of the vesico-ureteric junction in cases of primary ureteric reflux. Br J Urol. 1998;81(1):146–51.PubMedGoogle Scholar
  19. 19.
    Lebowitz RL, et al. International system of radiographic grading of vesicoureteric reflux. International Reflux Study in Children. Pediatr Radiol. 1985;15(2):105–9.PubMedGoogle Scholar
  20. 20.
    Zhang G, et al. Grading of reflux by radionuclide cystography. Clin Nucl Med. 1987;12(2):106–9.PubMedGoogle Scholar
  21. 21.
    Hutch JA. Theory of maturation of the intravesical ureter. J Urol. 1961;86:534–8.PubMedGoogle Scholar
  22. 22.
    Silva JM, et al. Predictive factors of resolution of primary vesico-ureteric reflux: a multivariate analysis. BJU Int. 2006;97(5):1063–8.PubMedGoogle Scholar
  23. 23.
    Smellie JM, et al. Outcome at 10 years of severe vesicoureteric reflux managed medically: report of the International Reflux Study in Children. J Pediatr. 2001;139(5):656–63.PubMedGoogle Scholar
  24. 24.
    Prospective trial of operative versus non-operative treatment of severe vesicoureteric reflux in children: five years’ observation. Birmingham Reflux Study Group. Br Med J (Clin Res Ed). 1987;295(6592):237–41.Google Scholar
  25. 25.
    Tamminen-Mobius T, et al. Cessation of vesicoureteral reflux for 5 years in infants and children allocated to medical treatment. The International Reflux Study in Children. J Urol. 1992;148(5 Pt 2):1662–6.PubMedGoogle Scholar
  26. 26.
    Schwab Jr CW, et al. Spontaneous resolution of vesicoureteral reflux: a 15-year perspective. J Urol. 2002;168(6):2594–9.PubMedGoogle Scholar
  27. 27.
    Elder JS, et al. Pediatric Vesicoureteral Reflux guidelines panel summary report on the management of primary vesicoureteral reflux in children. J Urol. 1997;157(5):1846–51.PubMedGoogle Scholar
  28. 28.
    Woodard JR, Holden S. The prognostic significance of fever in childhood urinary infections: observations in 350 consecutive patients. Clin Pediatr (Phila). 1976;15(11):1051–4.Google Scholar
  29. 29.
    Siegel SR, et al. Urinary infection in infants and preschool children. Five-year follow-up. Am J Dis Child. 1980;134(4):369–72.PubMedGoogle Scholar
  30. 30.
    Chen JJ, et al. Infant vesicoureteral reflux: a comparison between patients presenting with a prenatal diagnosis and those presenting with a urinary tract infection. Urology. 2003;61(2):442–6; discussion 446–7.PubMedGoogle Scholar
  31. 31.
    Koff SA, Wagner TT, Jayanthi VR. The relationship among dysfunctional elimination syndromes, primary vesicoureteral reflux and urinary tract infections in children. J Urol. 1998;160(3 Pt 2):1019–22.PubMedGoogle Scholar
  32. 32.
    Zerin JM, Ritchey ML, Chang AC. Incidental vesicoureteral reflux in neonates with antenatally detected hydronephrosis and other renal abnormalities. Radiology. 1993;187(1):157–60.PubMedGoogle Scholar
  33. 33.
    Upadhyay J, et al. Natural history of neonatal reflux associated with prenatal hydronephrosis: long-term results of a prospective study. J Urol. 2003;169(5):1837–41; discussion 1841; author reply 1841.PubMedGoogle Scholar
  34. 34.
    Papachristou F, et al. The characteristics and outcome of primary vesicoureteric reflux diagnosed in the first year of life. Int J Clin Pract. 2006;60(7):829–34.PubMedGoogle Scholar
  35. 35.
    Yeung CK, et al. The characteristics of primary vesico-ureteric reflux in male and female infants with pre-natal hydronephrosis. Br J Urol. 1997;80(2):319–27.PubMedGoogle Scholar
  36. 36.
    Yeung CK, et al. Urodynamic patterns in infants with normal lower urinary tracts or primary vesico-ureteric reflux. Br J Urol. 1998;81(3):461–7.PubMedGoogle Scholar
  37. 37.
    Godley ML, et al. The relationship between early renal status, and the resolution of vesico-ureteric reflux and bladder function at 16 months. BJU Int. 2001;87(6):457–62.PubMedGoogle Scholar
  38. 38.
    Herndon CD, et al. A multicenter outcomes analysis of patients with neonatal reflux presenting with prenatal hydronephrosis. J Urol. 1999;162(3 Pt 2):1203–8.PubMedGoogle Scholar
  39. 39.
    Noe HN, et al. The transmission of vesicoureteral reflux from parent to child. J Urol. 1992;148(6):1869–71.PubMedGoogle Scholar
  40. 40.
    Jerkins GR, Noe HN. Familial vesicoureteral reflux: a prospective study. J Urol. 1982;128(4):774–8.PubMedGoogle Scholar
  41. 41.
    Van den Abbeele AD, et al. Vesicoureteral reflux in asymptomatic siblings of patients with known reflux: radionuclide cystography. Pediatrics. 1987;79(1):147–53.PubMedGoogle Scholar
  42. 42.
    Sirota L, et al. Familial vesicoureteral reflux: a study of 16 families. Urol Radiol. 1986;8(1):22–4.PubMedGoogle Scholar
  43. 43.
    Noe HN. The long-term results of prospective sibling reflux screening. J Urol. 1992;148(5 Pt 2):1739–42.PubMedGoogle Scholar
  44. 44.
    Connolly LP, et al. Natural history of vesicoureteral reflux in siblings. J Urol. 1996;156(5):1805–7.PubMedGoogle Scholar
  45. 45.
    Wan J, et al. Sibling reflux: a dual center retrospective study. J Urol. 1996;156(2 Pt 2):677–9.PubMedGoogle Scholar
  46. 46.
    Kenda RB, et al. A follow-up study of vesico-ureteric reflux and renal scars in asymptomatic siblings of children with reflux. Nucl Med Commun. 1997;18(9):827–31.PubMedGoogle Scholar
  47. 47.
    Kenda RB, Zupancic Z. Ultrasound screening of older asymptomatic siblings of children with vesicoureteral reflux: is it beneficial? Pediatr Radiol. 1994;24(1):14–6.PubMedGoogle Scholar
  48. 48.
    Noe HN. The current status of screening for vesicoureteral reflux. Pediatr Nephrol. 1995;9(5):638–41.PubMedGoogle Scholar
  49. 49.
    Parekh DJ, et al. Outcome of sibling vesicoureteral reflux. J Urol. 2002;167(1):283–4.PubMedGoogle Scholar
  50. 50.
    Houle AM, et al. Impact of early screening for reflux in siblings on the detection of renal damage. BJU Int. 2004;94(1):123–5.PubMedGoogle Scholar
  51. 51.
    Pirker ME, Colhoun E, Puri P. Renal scarring in familial vesicoureteral reflux: is prevention possible? J Urol. 2006;176(4 Pt 2):1842–6; discussion 1846.PubMedGoogle Scholar
  52. 52.
    Yoneda A, et al. Risk factors for the development of renal parenchymal damage in familial vesicoureteral reflux. J Urol. 2002;168(4 Pt 2):1704–7.PubMedGoogle Scholar
  53. 53.
    Peters CA, et al. Summary of the AUA guideline on management of primary vesicoureteral reflux in children. J Urol. 2010;184(3):1134–44.PubMedGoogle Scholar
  54. 54.
    Norgaard JP, et al. Standardization and definitions in lower urinary tract dysfunction in children. International Children’s Continence Society. Br J Urol. 1998;81 Suppl 3:1–16.PubMedGoogle Scholar
  55. 55.
    McKenna PH, et al. Pelvic floor muscle retraining for pediatric voiding dysfunction using interactive computer games. J Urol. 1999;162(3 Pt 2):1056–62; discussion 1062–3.PubMedGoogle Scholar
  56. 56.
    Van Gool J, Tanagho EA. External sphincter activity and recurrent urinary tract infection in girls. Urology. 1977;10(4):348–53.PubMedGoogle Scholar
  57. 57.
    Bloom DA, Faerber G, Bomalaski MD. Urinary incontinence in girls. Evaluation, treatment, and its place in the standard model of voiding dysfunctions in children. Urol Clin North Am. 1995;22(3):521–38.PubMedGoogle Scholar
  58. 58.
    Farhat W, et al. The dysfunctional voiding scoring system: quantitative standardization of dysfunctional voiding symptoms in children. J Urol. 2000;164(3 Pt 2):1011–5.PubMedGoogle Scholar
  59. 59.
    Schulman SL, et al. Comprehensive management of dysfunctional voiding. Pediatrics. 1999;103(3):E31.PubMedGoogle Scholar
  60. 60.
    Shaikh N, et al. Dysfunctional elimination syndrome: is it related to urinary tract infection or vesicoureteral reflux diagnosed early in life? Pediatrics. 2003;112(5):1134–7.PubMedGoogle Scholar
  61. 61.
    Seruca H. Vesicoureteral reflux and voiding dysfunction: a prospective study. J Urol. 1989;142(2 Pt 2):494–8; discussion 501.PubMedGoogle Scholar
  62. 62.
    Koff SA. Relationship between dysfunctional voiding and reflux. J Urol. 1992;148(5 Pt 2):1703–5.PubMedGoogle Scholar
  63. 63.
    van Gool JD, et al. Historical clues to the complex of dysfunctional voiding, urinary tract infection and vesicoureteral reflux. The International Reflux Study in Children. J Urol. 1992;148(5 Pt 2):1699–702.PubMedGoogle Scholar
  64. 64.
    Capozza N, Caione P. Dextranomer/hyaluronic acid copolymer implantation for vesico-ureteral reflux: a randomized comparison with antibiotic prophylaxis. J Pediatr. 2002;140(2):230–4.PubMedGoogle Scholar
  65. 65.
    Traxel E, et al. Risk factors for urinary tract infection after dextranomer/hyaluronic acid endoscopic injection. J Urol. 2009;182(4 Suppl):1708–12.PubMedGoogle Scholar
  66. 66.
    Parekh DJ, et al. The use of radiography, urodynamic studies and cystoscopy in the evaluation of voiding dysfunction. J Urol. 2001;165(1):215–8.PubMedGoogle Scholar
  67. 67.
    Greenfield SP, Wan J. The relationship between dysfunctional voiding and congenital vesicoureteral reflux. Curr Opin Urol. 2000;10(6):607–10.PubMedGoogle Scholar
  68. 68.
    Glazier DB, et al. Evaluation of the utility of video-urodynamics in children with urinary tract infection and voiding dysfunction. Br J Urol. 1997;80(5):806–8.PubMedGoogle Scholar
  69. 69.
    Rushton HG. Wetting and functional voiding disorders. Urol Clin North Am. 1995;22(1):75–93.PubMedGoogle Scholar
  70. 70.
    O’Regan S, Yazbeck S, Schick E. Constipation, bladder instability, urinary tract infection syndrome. Clin Nephrol. 1985;23(3):152–4.PubMedGoogle Scholar
  71. 71.
    Neumann PZ, DeDomenico IJ, Nogrady MB. Constipation and urinary tract infection. Pediatrics. 1973;52(2):241–5.PubMedGoogle Scholar
  72. 72.
    Chase JW, et al. Functional constipation in children. J Urol. 2004;171(6 Pt 2):2641–3.PubMedGoogle Scholar
  73. 73.
    Smellie JM, Normand IC. Bacteriuria, reflux, and renal scarring. Arch Dis Child. 1975;50(8):581–5.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Bhatnagar V, et al. The role of DMSA scans in evaluation of the correlation between urinary tract infection, vesicoureteric reflux, and renal scarring. Pediatr Surg Int. 2002;18(2–3):128–34.PubMedGoogle Scholar
  75. 75.
    Hodson CJ, Edwards D. Chronic pyelonephritis and vesico-ureteric reflex. Clin Radiol. 1960;11:219–31.PubMedGoogle Scholar
  76. 76.
    Bailey RR. The relationship of vesico-ureteric reflux to urinary tract infection and chronic pyelonephritis-reflux nephropathy. Clin Nephrol. 1973;1(3):132–41.PubMedGoogle Scholar
  77. 77.
    Nguyen HT, et al. 99m Technetium dimercapto-succinic acid renal scintigraphy abnormalities in infants with sterile high grade vesicoureteral reflux. J Urol. 2000;164(5):1674–8; discussion 1678–9.PubMedGoogle Scholar
  78. 78.
    Hiraoka M, et al. Congenitally small kidneys with reflux as a common cause of nephropathy in boys. Kidney Int. 1997;52(3):811–6.PubMedGoogle Scholar
  79. 79.
    Risdon RA, Yeung CK, Ransley PG. Reflux nephropathy in children submitted to unilateral nephrectomy: a clinicopathological study. Clin Nephrol. 1993;40(6):308–14.PubMedGoogle Scholar
  80. 80.
    Pennesi M, Travan L, Peratoner L, Bordugo A, Cattaneo A, Ronfani L, Minisini S, Ventura A, for the North East Italy Prophylaxis in VUR study group. Is antibiotic prophylaxis in children with vesicoureteral reflux effective in preventing pyelonephritis and renal scars? A randomized, controlled trial. Pediatrics. 2008;121(6):e1489–94.PubMedGoogle Scholar
  81. 81.
    Wennerstrom M, et al. Primary and acquired renal scarring in boys and girls with urinary tract infection. J Pediatr. 2000;136(1):30–4.PubMedGoogle Scholar
  82. 82.
    Mattoo TK. Vesicoureteral reflux and reflux nephropathy. Adv Chronic Kidney Dis. 2011;18(5):348–54.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Rushton HG, et al. Renal scarring following reflux and nonreflux pyelonephritis in children: evaluation with 99mtechnetium-dimercaptosuccinic acid scintigraphy. J Urol. 1992;147(5):1327–32 [erratum appears in J Urol 1992;148(3):898].PubMedGoogle Scholar
  84. 84.
    Jakobsson B, Berg U, Svensson L. Renal scarring after acute pyelonephritis. Arch Dis Child. 1994;70(2):111–5.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Ransley PG, Risdon RA. Renal papillary morphology in infants and young children. Urol Res. 1975;3(3):111–3.PubMedGoogle Scholar
  86. 86.
    Ransley PG, Risdon RA. Reflux nephropathy: effects of antimicrobial therapy on the evolution of the early pyelonephritic scar. Kidney Int. 1981;20(6):733–42.PubMedGoogle Scholar
  87. 87.
    Filly R, et al. Development and progression of clubbing and scarring in children with recurrent urinary tract infections. Radiology. 1974;113(1):145–53.PubMedGoogle Scholar
  88. 88.
    Goldraich NP, Goldraich IH. Update on dimercaptosuccinic acid renal scanning in children with urinary tract infection. Pediatr Nephrol. 1995;9(2):221–6; discussion 227.PubMedGoogle Scholar
  89. 89.
    Shindo S, Bernstein J, Arant Jr BS. Evolution of renal segmental atrophy (Ask-Upmark kidney) in children with vesicoureteric reflux: radiographic and morphologic studies. J Pediatr. 1983;102(6):847–54.PubMedGoogle Scholar
  90. 90.
    Roberts JA. Etiology and pathophysiology of pyelonephritis. Am J Kidney Dis. 1991;17(1):1–9.PubMedGoogle Scholar
  91. 91.
    Roberts JA. Mechanisms of renal damage in chronic pyelonephritis (reflux nephropathy). Curr Top Pathol. 1995;88:265–87.PubMedGoogle Scholar
  92. 92.
    Roberts JA, et al. Immunology of pyelonephritis in the primate model: live versus heat-killed bacteria. Kidney Int. 1981;19(2):297–305.PubMedGoogle Scholar
  93. 93.
    McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985;312(3):159–63.PubMedGoogle Scholar
  94. 94.
    Smith EA. Pyelonephritis, renal scarring, and reflux nephropathy: a pediatric urologist’s perspective. Pediatr Radiol. 2008;38 Suppl 1:S76–82.PubMedGoogle Scholar
  95. 95.
    Roberts JA. Studies of vesicoureteral reflux: a review of work in a primate model. South Med J. 1978;71(1):28–30.PubMedGoogle Scholar
  96. 96.
    Eddy AA. Interstitial macrophages as mediators of renal fibrosis. Exp Nephrol. 1995;3(2):76–9.PubMedGoogle Scholar
  97. 97.
    Muller GA, Strutz FM. Renal fibroblast heterogeneity. Kidney Int Suppl. 1995;50:S33–6.PubMedGoogle Scholar
  98. 98.
    Roberts JA. Pathogenesis of pyelonephritis. J Urol. 1983;129(6):1102–6.PubMedGoogle Scholar
  99. 99.
    Matsuoka H, et al. Renal pathology in patients with reflux nephropathy. The turning point in irreversible renal disease. Eur Urol. 1994;26(2):153–9.PubMedGoogle Scholar
  100. 100.
    Akaoka K, White RH, Raafat F. Glomerular morphometry in childhood reflux nephropathy, emphasizing the capillary changes. Kidney Int. 1995;47(4):1108–14.PubMedGoogle Scholar
  101. 101.
    Torres VE, et al. The progression of vesicoureteral reflux nephropathy. Ann Intern Med. 1980;92(6):776–84.PubMedGoogle Scholar
  102. 102.
    Jodal U. The natural history of bacteriuria in childhood. Infect Dis Clin North Am. 1987;1(4):713–29.PubMedGoogle Scholar
  103. 103.
    Lomberg H, et al. Virulence-associated traits in Escherichia coli causing first and recurrent episodes of urinary tract infection in children with or without vesicoureteral reflux. J Infect Dis. 1984;150(4):561–9.PubMedGoogle Scholar
  104. 104.
    de Man P, et al. Bacterial attachment as a predictor of renal abnormalities in boys with urinary tract infection. J Pediatr. 1989;115(6):915–22.PubMedGoogle Scholar
  105. 105.
    Ozen S, et al. Implications of certain genetic polymorphisms in scarring in vesicoureteric reflux: importance of ACE polymorphism. Am J Kidney Dis. 1999;34(1):140–5.PubMedGoogle Scholar
  106. 106.
    Hohenfellner K, et al. ACE I/D gene polymorphism predicts renal damage in congenital uropathies. Pediatr Nephrol. 1999;13(6):514–8.PubMedGoogle Scholar
  107. 107.
    Majd M, et al. Relationship among vesicoureteral reflux, P-fimbriated Escherichia coli, and acute pyelonephritis in children with febrile urinary tract infection. J Pediatr. 1991;119(4):578–85.PubMedGoogle Scholar
  108. 108.
    Benador D, et al. Cortical scintigraphy in the evaluation of renal parenchymal changes in children with pyelonephritis. J Pediatr. 1994;124(1):17–20.PubMedGoogle Scholar
  109. 109.
    Jakobsson B, Soderlundh S, Berg U. Diagnostic significance of 99mTc-dimercaptosuccinic acid (DMSA) scintigraphy in urinary tract infection. Arch Dis Child. 1992;67(11):1338–42.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Benador D, et al. Are younger children at highest risk of renal sequelae after pyelonephritis? Lancet. 1997;349(9044):17–9.PubMedGoogle Scholar
  111. 111.
    Berg UB. Long-term followup of renal morphology and function in children with recurrent pyelonephritis. J Urol. 1992;148(5 Pt 2):1715–20.PubMedGoogle Scholar
  112. 112.
    Jacobson SH, et al. Long-term prognosis of post-infectious renal scarring in relation to radiological findings in childhood–a 27-year follow-up. Pediatr Nephrol. 1992;6(1):19–24.PubMedGoogle Scholar
  113. 113.
    Medical versus surgical treatment of primary vesicoureteral reflux: report of the International Reflux Study Committee. Pediatrics. 1981;67(3):392–400.Google Scholar
  114. 114.
    Winberg J, et al. Epidemiology of symptomatic urinary tract infection in childhood. Acta Paediatr Suppl. 1974;252:1–20.Google Scholar
  115. 115.
    Pylkkanen J, Vilska J, Koskimies O. The value of level diagnosis of childhood urinary tract infection in predicting renal injury. Acta Paediatr Scand. 1981;70(6):879–83.PubMedGoogle Scholar
  116. 116.
    Faust WC, Diaz M, Pohl HG. Incidence of post-pyelonephritic renal scarring: a meta-analysis of the dimercapto-succinic acid literature. J Urol. 2009;181(1):290–7; discussion 297–8.PubMedGoogle Scholar
  117. 117.
    Rushton HG. The evaluation of acute pyelonephritis and renal scarring with technetium 99m-dimercaptosuccinic acid renal scintigraphy: evolving concepts and future directions. Pediatr Nephrol. 1997;11(1):108–20.PubMedGoogle Scholar
  118. 118.
    Doganis D, et al. Does early treatment of urinary tract infection prevent renal damage? Pediatrics. 2007;120(4):e922–8.PubMedGoogle Scholar
  119. 119.
    Ditchfield MR, et al. Risk factors in the development of early renal cortical defects in children with urinary tract infection. AJR Am J Roentgenol. 1994;162(6):1393–7.PubMedGoogle Scholar
  120. 120.
    Shaikh N, et al. Risk of renal scarring in children with a first urinary tract infection: a systematic review. Pediatrics. 2010;126(6):1084–91.PubMedGoogle Scholar
  121. 121.
    Gonzalez E, Papazyan J-P, Girardin E. Impact of vesicoureteral reflux on the size of renal lesions after an episode of acute pyelonephritis. J Urol. 2005;173(2):571–4; discussion 574–5.PubMedGoogle Scholar
  122. 122.
    Skoog SJ, et al. Pediatric Vesicoureteral Reflux guidelines panel summary report: clinical practice guidelines for screening siblings of children with vesicoureteral reflux and neonates/infants with prenatal hydronephrosis. J Urol. 2010;184(3):1145–51.PubMedGoogle Scholar
  123. 123.
    Ahmed M, et al. Dimercaptosuccinic acid (DMSA) renal scan in the evaluation of hypertension in children. Pediatr Nephrol. 2008;23(3):435–8.PubMedGoogle Scholar
  124. 124.
    Barai S, et al. Prevalence of vesicoureteral reflux in patients with incidentally diagnosed adult hypertension. Urology. 2004;63(6):1045–8; discussion 1048–9.PubMedGoogle Scholar
  125. 125.
    Ismaili K, et al. Primary vesicoureteral reflux detected in neonates with a history of fetal renal pelvis dilatation: a prospective clinical and imaging study. J Pediatr. 2006;148(2):222–7.PubMedGoogle Scholar
  126. 126.
    Sweeney B, et al. Reflux nephropathy in infancy: a comparison of infants presenting with and without urinary tract infection. J Urol. 2001;166(2):648–50.PubMedGoogle Scholar
  127. 127.
    Wheeler D, et al. Antibiotics and surgery for vesicoureteric reflux: a meta-analysis of randomised controlled trials. Arch Dis Child. 2003;88(8):688–94.PubMedCentralPubMedGoogle Scholar
  128. 128.
    Wheeler DM, et al. Interventions for primary vesicoureteric reflux. Cochrane Database Syst Rev. 2004;3, CD001532.PubMedGoogle Scholar
  129. 129.
    Craig JC, et al. Does treatment of vesicoureteric reflux in childhood prevent end-stage renal disease attributable to reflux nephropathy? Pediatrics. 2000;105(6):1236–41.PubMedGoogle Scholar
  130. 130.
    Verber IG, Meller ST. Serial 99mTc dimercaptosuccinic acid (DMSA) scans after urinary infections presenting before the age of 5 years. Arch Dis Child. 1989;64(11):1533–7.PubMedCentralPubMedGoogle Scholar
  131. 131.
    Piepsz A, et al. Five-year study of medical or surgical treatment in children with severe vesico-ureteral reflux dimercaptosuccinic acid findings. International Reflux Study Group in Europe. Eur J Pediatr. 1998;157(9):753–8.PubMedGoogle Scholar
  132. 132.
    Ditchfield MR, et al. Vesicoureteral reflux: an accurate predictor of acute pyelonephritis in childhood urinary tract infection? Radiology. 1994;190(2):413–5.PubMedGoogle Scholar
  133. 133.
    Howie AJ, Buist LJ, Coulthard MG. Reflux nephropathy in transplants. Pediatr Nephrol. 2002;17(7):485–90.PubMedGoogle Scholar
  134. 134.
    Coulthard MG, et al. Renal scarring caused by vesicoureteric reflux and urinary infection: a study in pigs. Pediatr Nephrol. 2002;17(7):481–4.PubMedGoogle Scholar
  135. 135.
    Ataei N, et al. Evaluation of acute pyelonephritis with DMSA scans in children presenting after the age of 5 years. Pediatr Nephrol. 2005;20(10):1439–44.PubMedGoogle Scholar
  136. 136.
    Lin KY, et al. Acute pyelonephritis and sequelae of renal scar in pediatric first febrile urinary tract infection. Pediatr Nephrol. 2003;18(4):362–5.PubMedGoogle Scholar
  137. 137.
    Coulthard MG, et al. Can prompt treatment of childhood UTI prevent kidney scarring? Pediatr Nephrol. 2009;24(10):2059–63.PubMedGoogle Scholar
  138. 138.
    Pecile P, et al. Age-related renal parenchymal lesions in children with first febrile urinary tract infections. Pediatrics. 2009;124(1):23–9.PubMedGoogle Scholar
  139. 139.
    Smellie JM, Poulton A, Prescod NP. Retrospective study of children with renal scarring associated with reflux and urinary infection. BMJ. 1994;308(6938):1193–6.PubMedCentralPubMedGoogle Scholar
  140. 140.
    Fernandez-Menendez JM, et al. Risk factors in the development of early technetium-99m dimercaptosuccinic acid renal scintigraphy lesions during first urinary tract infection in children. Acta Paediatr. 2003;92(1):21–6.PubMedGoogle Scholar
  141. 141.
    Hewitt IK, et al. Early treatment of acute pyelonephritis in children fails to reduce renal scarring: data from the Italian Renal Infection Study Trials. Pediatrics. 2008;122(3):486–90.PubMedGoogle Scholar
  142. 142.
    Kincaid-Smith P. Glomerular lesions in atrophic pyelonephritis and reflux nephropathy. Kidney Int Suppl. 1975;4:S81–3.PubMedGoogle Scholar
  143. 143.
    Bailey RR, et al. Glomerular lesions in the ‘normal’ kidney in patients with unilateral reflux nephropathy. Contrib Nephrol. 1984;39:126–31.PubMedGoogle Scholar
  144. 144.
    Zhang Y, Bailey RR. A long term follow up of adults with reflux nephropathy. N Z Med J. 1995;108(998):142–4.PubMedGoogle Scholar
  145. 145.
    Cotran RS. Nephrology forum. Glomerulosclerosis in reflux nephropathy. Kidney Int. 1982;21(3):528–34.PubMedGoogle Scholar
  146. 146.
    Bhathena DB, et al. Focal and segmental glomerular sclerosis in reflux nephropathy. Am J Med. 1980;68(6):886–92.PubMedGoogle Scholar
  147. 147.
    Coppo R, et al. Glomerular permselectivity to macromolecules in reflux nephropathy: microalbuminuria during acute hyperfiltration due to aminoacid infusion. Clin Nephrol. 1993;40(6):299–307.PubMedGoogle Scholar
  148. 148.
    Morita M, et al. The glomerular changes in children with reflux nephropathy. J Pathol. 1990;162(3):245–53.PubMedGoogle Scholar
  149. 149.
    Karlen J, et al. Incidence of microalbuminuria in children with pyelonephritic scarring. Pediatr Nephrol. 1996;10(6):705–8.PubMedGoogle Scholar
  150. 150.
    Tomlinson PA, et al. Differential excretion of urinary proteins in children with vesicoureteric reflux and reflux nephropathy. Pediatr Nephrol. 1994;8(1):21–5.PubMedGoogle Scholar
  151. 151.
    Miyakita H, Puri P. Urinary levels of N-acetyl-beta-d-glucosaminidase: a simple marker for predicting tubular damage in higher grades of vesicoureteric reflux. Eur Urol. 1994;25(2):135–7.PubMedGoogle Scholar
  152. 152.
    Salvaggio E, et al. Beta 2 microglobulin in the diagnosis of reflux nephropathy in childhood. Med Surg Pediatr. 1988;10(1):83–8.Google Scholar
  153. 153.
    Goonasekera CD, Shah V, Dillon MJ. Tubular proteinuria in reflux nephropathy: post ureteric re-implantation. Pediatr Nephrol. 1996;10(5):559–63.PubMedGoogle Scholar
  154. 154.
    Bell FG, Wilkin TJ, Atwell JD. Microproteinuria in children with vesicoureteric reflux. Br J Urol. 1986;58(6):605–9.PubMedGoogle Scholar
  155. 155.
    Smellie JM, et al. Childhood reflux and urinary infection: a follow-up of 10–41 years in 226 adults. Pediatr Nephrol. 1998;12(9):727–36.PubMedGoogle Scholar
  156. 156.
    Wallace DM, Rothwell DL, Williams DI. The long-term follow-up of surgically treated vesicoureteric reflux. Br J Urol. 1978;50(7):479–84.PubMedGoogle Scholar
  157. 157.
    Kohler J, et al. Vesicoureteral reflux diagnosed in adulthood. Incidence of urinary tract infections, hypertension, proteinuria, back pain and renal calculi. Nephrol Dial Transplant. 1997;12(12):2580–7.PubMedGoogle Scholar
  158. 158.
    Simoes e Silva AC, et al. Risk of hypertension in primary vesicoureteral reflux. Pediatr Nephrol. 2007;22(3):459–62.PubMedGoogle Scholar
  159. 159.
    Goonasekera CD, et al. 15-year follow-up of renin and blood pressure in reflux nephropathy. Lancet. 1996;347(9002):640–3.PubMedGoogle Scholar
  160. 160.
    Winterborn MH, France NE. Arterial changes associated with hydronephrosis in infants and children. Br J Urol. 1972;44(1):96–104.PubMedGoogle Scholar
  161. 161.
    Stecker Jr JF, Read BP, Poutasse EF. Pediatric hypertension as a delayed sequela of reflux-induced chronic pyelonephritis. J Urol. 1977;118(4):644–6.PubMedGoogle Scholar
  162. 162.
    Savage JM, et al. Five year prospective study of plasma renin activity and blood pressure in patients with longstanding reflux nephropathy. Arch Dis Child. 1987;62(7):678–82.PubMedCentralPubMedGoogle Scholar
  163. 163.
    Wolfish NM, et al. Prevalence of hypertension in children with primary vesicoureteral reflux. J Pediatr. 1993;123(4):559–63.PubMedGoogle Scholar
  164. 164.
    Wennerstrom M, et al. Ambulatory blood pressure 16–26 years after the first urinary tract infection in childhood. J Hypertens. 2000;18(4):485–91.PubMedGoogle Scholar
  165. 165.
    Geback C, et al. Twenty-four-hour ambulatory blood pressure in adult women with urinary tract infection in childhood. J Hypertens. 2014;32(8):1658–64.PubMedGoogle Scholar
  166. 166.
    NAPRTCS, North American Pediatric Renal Transplant Cooperative Study (NAPRTCS); 2008 Annual reportGoogle Scholar
  167. 167.
    Furth SL, Abraham AG, Jerry-Fluker J, Schwartz GJ, Benfield M, Kaskel F, Wong C, Mak RH, Moxey-Mims M, Warady BA. Metabolic abnormalities, CVD risk factors and GFR decline in children with CKD. Clin J Am Soc Nephrol. 2011;6:2132.PubMedCentralPubMedGoogle Scholar
  168. 168.
    Roberts JP, Atwell JD. Vesicoureteric reflux and urinary calculi in children. Br J Urol. 1989;64(1):10–2.PubMedGoogle Scholar
  169. 169.
    Jacobson SH, et al. Development of hypertension and uraemia after pyelonephritis in childhood: 27 year follow up. BMJ. 1989;299(6701):703–6.PubMedCentralPubMedGoogle Scholar
  170. 170.
    Mansfield JT, et al. Complications of pregnancy in women after childhood reimplantation for vesicoureteral reflux: an update with 25 years of followup. J Urol. 1995;154(2 Pt 2):787–90.PubMedGoogle Scholar
  171. 171.
    Jungers P, et al. Pregnancy in women with reflux nephropathy. Kidney Int. 1996;50(2):593–9.PubMedGoogle Scholar
  172. 172.
    el-Khatib M, et al. Pregnancy-related complications in women with reflux nephropathy. Clin Nephrol. 1994;41(1):50–5.PubMedGoogle Scholar
  173. 173.
    Williams DG. Reflux nephropathy. Q J Med. 1990;77(284):1205–7.PubMedGoogle Scholar
  174. 174.
    el-Khatib MT, Becker GJ, Kincaid-Smith PS. Reflux nephropathy and primary vesicoureteric reflux in adults. Q J Med. 1990;77(284):1241–53.PubMedGoogle Scholar
  175. 175.
    Bailey RR, Lynn KL, Smith AH. Long-term followup of infants with gross vesicoureteral reflux. J Urol. 1992;148(5 Pt 2):1709–11.PubMedGoogle Scholar
  176. 176.
    Lahdes-Vasama T, Niskanen K, Ronnholm K. Outcome of kidneys in patients treated for vesicoureteral reflux (VUR) during childhood. Nephrol Dial Transplant. 2006;21(9):2491–7.PubMedGoogle Scholar
  177. 177.
    Hollowell JG. Outcome of pregnancy in women with a history of vesico-ureteric reflux. BJU Int. 2008;102(7):780–4.PubMedGoogle Scholar
  178. 178.
    Feather SA, et al. Primary, nonsyndromic vesicoureteric reflux and its nephropathy is genetically heterogeneous, with a locus on chromosome 1. Am J Hum Genet. 2000;66(4):1420–5.PubMedCentralPubMedGoogle Scholar
  179. 179.
    Conte ML, et al. A genome search for primary vesicoureteral reflux shows further evidence for genetic heterogeneity. Pediatr Nephrol. 2008;23(4):587–95.PubMedCentralPubMedGoogle Scholar
  180. 180.
    Williams G, et al. Vesicoureteral reflux. J Am Soc Nephrol. 2008;19(5):847–62.PubMedGoogle Scholar
  181. 181.
    Bowen SE, et al. Interplay between vesicoureteric reflux and kidney infection in the development of reflux nephropathy in mice. Dis Model Mech. 2013;6(4):934–41.PubMedCentralPubMedGoogle Scholar
  182. 182.
    Murawski IJ, Watt CL, Gupta IR. Vesico-ureteric reflux: using mouse models to understand a common congenital urinary tract defect. Pediatr Nephrol. 2011;26:1513.PubMedGoogle Scholar
  183. 183.
    Stephens FD, Joske RA, Simmons RT. Megaureter with vesico-ureteric reflux in twins. Aust N Z J Surg. 1955;24(3):192–4.PubMedGoogle Scholar
  184. 184.
    Kerr DN, Pillai PM. Identical twins with identical vesicoureteric reflux: chronic pyelonephritis in one. Br Med J (Clin Res Ed). 1983;286(6373):1245–6.Google Scholar
  185. 185.
    Mebust WK, Foret JD. Vesicoureteral reflux in identical twins. J Urol. 1972;108(4):635–6.PubMedGoogle Scholar
  186. 186.
    Tobenkin MI. Hereditary vesicoureteral reflux. South Med J. 1964;57:139–47.PubMedGoogle Scholar
  187. 187.
    Kaefer M, et al. Sibling vesicoureteral reflux in multiple gestation births. Pediatrics. 2000;105(4):800–4.PubMedGoogle Scholar
  188. 188.
    Chapman CJ, et al. Vesicoureteric reflux: segregation analysis. Am J Med Genet. 1985;20(4):577–84.PubMedGoogle Scholar
  189. 189.
    Devriendt K, et al. Vesico-ureteral reflux: a genetic condition? Eur J Pediatr. 1998;157(4):265–71.PubMedGoogle Scholar
  190. 190.
    Pasch A, et al. Multiple urinary tract malformations with likely recessive inheritance in a large Somalian kindred. Nephrol Dial Transplant. 2004;19(12):3172–5.PubMedGoogle Scholar
  191. 191.
    Weng PL, et al. A recessive gene for primary vesicoureteral reflux maps to chromosome 12p11-q13. J Am Soc Nephrol. 2009;20(7):1633–40.PubMedCentralPubMedGoogle Scholar
  192. 192.
    Burger RH. Familial and hereditary vesicouretral reflux. JAMA. 1971;216(4):680–1.PubMedGoogle Scholar
  193. 193.
    Burger RH, Smith C. Hereditary and familial vesicoureteral reflux. J Urol. 1971;106(6):845–51.PubMedGoogle Scholar
  194. 194.
    de Vargas A, et al. A family study of vesicoureteric reflux. J Med Genet. 1978;15(2):85–96.PubMedCentralPubMedGoogle Scholar
  195. 195.
    Lu W, et al. Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet. 2007;80(4):616–32.PubMedCentralPubMedGoogle Scholar
  196. 196.
    Grieshammer U, et al. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell. 2004;6:709–17.PubMedGoogle Scholar
  197. 197.
    Darlow JM, et al. The increased incidence of the RET p.Gly691Ser variant in French-Canadian vesicoureteric reflux patients is not replicated by a larger study in Ireland. Hum Mutat. 2009;30(5):E612–7.PubMedGoogle Scholar
  198. 198.
    Hohenfellner K, et al. Angiotensin II, type 2 receptor in the development of vesico-ureteric reflux. BJU Int. 1999;83(3):318–22.PubMedGoogle Scholar
  199. 199.
    Yang Y, et al. RET Gly691Ser mutation is associated with primary vesicoureteral reflux in the French-Canadian population from Quebec. Hum Mutat. 2008;29(5):695–702.PubMedGoogle Scholar
  200. 200.
    Sanyanusin P, et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteric reflux. Nat Genet. 1995;9:358–64.PubMedGoogle Scholar
  201. 201.
    Rigoli L, et al. Angiotensin-converting enzyme and angiotensin type 2 receptor gene genotype distributions in Italian children with congenital uropathies. Pediatr Res. 2004;56(6):988–93.PubMedGoogle Scholar
  202. 202.
    Jenkins D, et al. Mutation analyses of Uroplakin II in children with renal tract malformations. Nephrol Dial Transplant. 2006;21(12):3415–21.PubMedGoogle Scholar
  203. 203.
    Jenkins D, et al. De novo Uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure. J Am Soc Nephrol. 2005;16(7):2141–9.PubMedGoogle Scholar
  204. 204.
    Cordell HJ, et al. Whole-genome linkage and association scan in primary, nonsyndromic vesicoureteric reflux. J Am Soc Nephrol. 2010;21(1):113–23.PubMedCentralPubMedGoogle Scholar
  205. 205.
    Kelly H, et al. A genome-wide scan for genes involved in primary vesicoureteric reflux. J Med Genet. 2007;44(11):710–7.PubMedCentralPubMedGoogle Scholar
  206. 206.
    van Eerde AM, et al. Linkage study of 14 candidate genes and loci in four large Dutch families with vesico-ureteral reflux. Pediatr Nephrol. 2007;22(8):1129–33.PubMedCentralPubMedGoogle Scholar
  207. 207.
    Sanna-Cherchi S, et al. Familial vesicoureteral reflux: testing replication of linkage in seven new multigenerational kindreds. J Am Soc Nephrol. 2005;16(6):1781–7.PubMedGoogle Scholar
  208. 208.
    Briggs CE, et al. A genome scan in affected sib-pairs with familial vesicoureteral reflux identifies a locus on chromosome 5. Eur J Hum Genet. 2010;18(2):245–50.PubMedCentralPubMedGoogle Scholar
  209. 209.
    Vats KR, et al. A locus for renal malformations including vesico-ureteric reflux on chromosome 13q33-34. J Am Soc Nephrol. 2006;17(4):1158–67.PubMedGoogle Scholar
  210. 210.
    Gbadegesin RA, et al. TNXB mutations can cause vesicoureteral reflux. J Am Soc Nephrol. 2013;24(8):1313–22.PubMedCentralPubMedGoogle Scholar
  211. 211.
    van Eerde AM, et al. Is joint hypermobility associated with vesico-ureteral reflux? An assessment of 50 patients. BJU Int. 2012;109(8):1243–8.PubMedGoogle Scholar
  212. 212.
    Beiraghdar F, et al. Vesicourethral reflux in pediatrics with hypermobility syndrome. Nephrourol Mon. 2013;5(4):924–7.PubMedCentralPubMedGoogle Scholar
  213. 213.
    Ragnarsdottir B, et al. Genetics of innate immunity and UTI susceptibility. Nat Rev Urol. 2011;8(8):449–68.PubMedGoogle Scholar
  214. 214.
    Sivick KE, Mobley HL. Waging war against uropathogenic Escherichia coli: winning back the urinary tract. Infect Immun. 2010;78(2):568–85.PubMedCentralPubMedGoogle Scholar
  215. 215.
    Chowdhury P, Sacks SH, Sheerin NS. Minireview: functions of the renal tract epithelium in coordinating the innate immune response to infection. Kidney Int. 2004;66(4):1334–44.PubMedGoogle Scholar
  216. 216.
    Godaly G, et al. Transepithelial neutrophil migration is CXCR1 dependent in vitro and is defective in IL-8 receptor knockout mice. J Immunol. 2000;165(9):5287–94.PubMedGoogle Scholar
  217. 217.
    Nielubowicz GR, Mobley HL. Host-pathogen interactions in urinary tract infection. Nat Rev Urol. 2010;7(8):430–41.PubMedGoogle Scholar
  218. 218.
    Meylan PR, et al. Relationship between neutrophil-mediated oxidative injury during acute experimental pyelonephritis and chronic renal scarring. Infect Immun. 1989;57(7):2196–202.PubMedCentralPubMedGoogle Scholar
  219. 219.
    Mundi H, et al. Extracellular release of reactive oxygen species from human neutrophils upon interaction with Escherichia coli strains causing renal scarring. Infect Immun. 1991;59(11):4168–72.PubMedCentralPubMedGoogle Scholar
  220. 220.
    Ragnarsdottir B, Svanborg C. Susceptibility to acute pyelonephritis or asymptomatic bacteriuria: host-pathogen interaction in urinary tract infections. Pediatr Nephrol. 2012, 27, 2017Google Scholar
  221. 221.
    Fischer H, et al. Pathogen specific, IRF3-dependent signaling and innate resistance to human kidney infection. PLoS Pathog. 2010;6(9):e1001109.PubMedCentralPubMedGoogle Scholar
  222. 222.
    Hoshino K, et al. Cutting edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol. 1999;162(7):3749–52.PubMedGoogle Scholar
  223. 223.
    Hopkins WJ, et al. Time course and host responses to Escherichia coli urinary tract infection in genetically distinct mouse strains. Infect Immun. 1998;66(6):2798–802.PubMedCentralPubMedGoogle Scholar
  224. 224.
    Godaly G, et al. Neutrophil recruitment, chemokine receptors, and resistance to mucosal infection. J Leukoc Biol. 2001;69(6):899–906.PubMedGoogle Scholar
  225. 225.
    Hagberg L, et al. Difference in susceptibility to gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect Immun. 1984;46(3):839–44.PubMedCentralPubMedGoogle Scholar
  226. 226.
    Ragnarsdottir B, et al. Toll-like receptor 4 promoter polymorphisms: common TLR4 variants may protect against severe urinary tract infection. PLoS One. 2010;5(5):e10734.PubMedCentralPubMedGoogle Scholar
  227. 227.
    Ragnarsdottir B, et al. Reduced toll-like receptor 4 expression in children with asymptomatic bacteriuria. J Infect Dis. 2007;196(3):475–84.PubMedGoogle Scholar
  228. 228.
    Svensson M, et al. Natural history of renal scarring in susceptible mIL-8Rh−/− mice. Kidney Int. 2005;67(1):103–10.PubMedGoogle Scholar
  229. 229.
    Svensson M, et al. Acute pyelonephritis and renal scarring are caused by dysfunctional innate immunity in mCxcr2 heterozygous mice. Kidney Int. 2011;80(10):1064–72.PubMedCentralPubMedGoogle Scholar
  230. 230.
    Frendeus B, et al. Interleukin 8 receptor deficiency confers susceptibility to acute experimental pyelonephritis and may have a human counterpart. J Exp Med. 2000;192(6):881–90.PubMedCentralPubMedGoogle Scholar
  231. 231.
    Cheng CH, et al. Genetic polymorphisms and susceptibility to parenchymal renal infection among pediatric patients. Pediatr Infect Dis J. 2011;30(4):309–14.PubMedGoogle Scholar
  232. 232.
    Karoly E, et al. Heat shock protein 72 (HSPA1B) gene polymorphism and Toll-like receptor (TLR) 4 mutation are associated with increased risk of urinary tract infection in children. Pediatr Res. 2007;61(3):371–4.PubMedGoogle Scholar
  233. 233.
    Gokce I, et al. Urinary levels of interleukin-6 and interleukin-8 in patients with vesicoureteral reflux and renal parenchymal scar. Pediatr Nephrol. 2010;25(5):905–12.PubMedGoogle Scholar
  234. 234.
    Yoneda A, et al. Angiotensin II type 2 receptor gene is not responsible for familial vesicoureteral reflux. J Urol. 2002;168:1138–41.PubMedGoogle Scholar
  235. 235.
    Savvidou A, et al. Polymorphisms of the TNF-alpha and ACE genes, and renal scarring in infants with urinary tract infection. J Urol. 2010;183(2):684–7.PubMedGoogle Scholar
  236. 236.
    Sekerli E, et al. ACE gene insertion/deletion polymorphism and renal scarring in children with urinary tract infections. Pediatr Nephrol. 2009;24(10):1975–80.PubMedGoogle Scholar
  237. 237.
    Cotton SA, et al. Role of TGF-beta1 in renal parenchymal scarring following childhood urinary tract infection. Kidney Int. 2002;61(1):61–7.PubMedGoogle Scholar
  238. 238.
    Kowalewska-Pietrzak M, Klich I, Mlynarski W. TGF-beta1 gene polymorphisms and primary vesicoureteral reflux in childhood. Pediatr Nephrol. 2008;23(12):2195–200.PubMedGoogle Scholar
  239. 239.
    Hussein A, et al. Functional polymorphisms in transforming growth factor-beta-1 (TGFbeta-1) and vascular endothelial growth factor (VEGF) genes modify risk of renal parenchymal scarring following childhood urinary tract infection. Nephrol Dial Transplant. 2010;25(3):779–85.PubMedGoogle Scholar
  240. 240.
    Cheung HS. Radiological imaging of urinary tract infection in Malaysian children–a private hospital experience. Australas Radiol. 1992;36(1):23–6.PubMedGoogle Scholar
  241. 241.
    Rosenberg HK, Ilaslan H, Finkelstein MS. Work-up of urinary tract infection in infants and children. Ultrasound Q. 2001;17(2):87–102.PubMedGoogle Scholar
  242. 242.
    Huang HP, et al. Renal ultrasonography should be done routinely in children with first urinary tract infections. Urology. 2008;71(3):439–43.PubMedGoogle Scholar
  243. 243.
    Greenfield SP, Afshani E. Vesicoureteral reflux in children with and without a history of urinary tract infection: a comparative analysis. Urology. 1992;40(4):339–42.PubMedGoogle Scholar
  244. 244.
    Bomalaski MD, Ritchey ML, Bloom DA. What imaging studies are necessary to determine outcome after ureteroneocystostomy? J Urol. 1997;158(3 Pt 2):1226–8.PubMedGoogle Scholar
  245. 245.
    Radmayr C, et al. Importance of the renal resistive index in children suffering from vesicoureteral reflux. Eur Urol. 1999;36(1):75–9.PubMedGoogle Scholar
  246. 246.
    Oak SN, Kulkarni B, Chaubal N. Color flow doppler sonography: a reliable alternative to voiding cystourethrogram in the diagnosis of vesicoureteral reflux in children. Urology. 1999;53(6):1211–4.PubMedGoogle Scholar
  247. 247.
    Lavocat MP, et al. Imaging of pyelonephritis. Pediatr Radiol. 1997;27(2):159–65.PubMedGoogle Scholar
  248. 248.
    Halevy R, et al. Power doppler ultrasonography in the diagnosis of acute childhood pyelonephritis. Pediatr Nephrol. 2004;19(9):987–91.PubMedGoogle Scholar
  249. 249.
    Hitzel A, et al. Color and power doppler sonography versus DMSA scintigraphy in acute pyelonephritis and in prediction of renal scarring. J Nucl Med. 2002;43(1):27–32.PubMedGoogle Scholar
  250. 250.
    Ozcan C, et al. Bladder ultrasound in the evaluation of the efficacy of dextranomer/hyaluronic acid injection for treatment of vesicoureteral reflux. J Clin Ultrasound. 2007;35(7):357–62.PubMedGoogle Scholar
  251. 251.
    McMann LP, Scherz HC, Kirsch AJ. Long-term preservation of dextranomer/hyaluronic acid copolymer implants after endoscopic treatment of vesicoureteral reflux in children: a sonographic volumetric analysis. J Urol. 2007;177(1):316–20; discussion 320.PubMedGoogle Scholar
  252. 252.
    Sathapornwajana P, et al. Timing of voiding cystourethrogram after urinary tract infection. Arch Dis Child. 2008, 93, 229Google Scholar
  253. 253.
    McDonald A, et al. Voiding cystourethrograms and urinary tract infections: how long to wait? Pediatrics. 2000;105(4):E50.PubMedGoogle Scholar
  254. 254.
    Bisignani G, Decter RM. Voiding cystourethrography after uncomplicated ureteral reimplantation in children: is it necessary? J Urol. 1997;158(3 Pt 2):1229–31.PubMedGoogle Scholar
  255. 255.
    Fairley KF, Roysmith J. The forgotten factor in the evaluation of vesicoureteric reflux. Med J Aust. 1977;2(1):10–2.PubMedGoogle Scholar
  256. 256.
    Ekman H, et al. High diuresis, a factor in preventing vesicoureteral reflux. J Urol. 1966;95(4):511–5.PubMedGoogle Scholar
  257. 257.
    Zerin JM, Lebowitz RL. Catheter malposition during cystography: a cause of diagnostic errors. AJR Am J Roentgenol. 1989;153(2):363–7.PubMedGoogle Scholar
  258. 258.
    Merguerian PA, Corbett ST, Cravero J. Voiding ability using propofol sedation in children undergoing voiding cystourethrograms: a retrospective analysis. J Urol. 2006;176(1):299–302.PubMedGoogle Scholar
  259. 259.
    Jequier S, Jequier JC. Reliability of voiding cystourethrography to detect reflux. AJR Am J Roentgenol. 1989;153(4):807–10.PubMedGoogle Scholar
  260. 260.
    Fettich JJ, Kenda RB. Cyclic direct radionuclide voiding cystography: increasing reliability in detecting vesicoureteral reflux in children. Pediatr Radiol. 1992;22(5):337–8.PubMedGoogle Scholar
  261. 261.
    Papadopoulou F, et al. Cyclic voiding cystourethrography: is vesicoureteral reflux missed with standard voiding cystourethrography? Eur Radiol. 2002;12(3):666–70.PubMedGoogle Scholar
  262. 262.
    Arsanjani A, Alagiri M. Identification of filling versus voiding reflux as predictor of clinical outcome. Urology. 2007;70(2):351–4.PubMedGoogle Scholar
  263. 263.
    Kleinman PK, et al. Tailored low-dose fluoroscopic voiding cystourethrography for the reevaluation of vesicoureteral reflux in girls. AJR Am J Roentgenol. 1994;162(5):1151–4; discussion 1155–6.PubMedGoogle Scholar
  264. 264.
    Cleveland RH, et al. Voiding cystourethrography in children: value of digital fluoroscopy in reducing radiation dose. AJR Am J Roentgenol. 1992;158(1):137–42.PubMedGoogle Scholar
  265. 265.
    Jakobsson B, et al. 99mTechnetium-dimercaptosuccinic acid scan in the diagnosis of acute pyelonephritis in children: relation to clinical and radiological findings. Pediatr Nephrol. 1992;6(4):328–34.PubMedGoogle Scholar
  266. 266.
    Rushton HG, Majd M. Pyelonephritis in male infants: how important is the foreskin? J Urol. 1992;148(2 Pt 2):733–6; discussion 737–8.PubMedGoogle Scholar
  267. 267.
    MacKenzie JR. A review of renal scarring in children. Nucl Med Commun. 1996;17(3):176–90.PubMedGoogle Scholar
  268. 268.
    Applegate KE, et al. A prospective comparison of high-resolution planar, pinhole, and triple-detector SPECT for the detection of renal cortical defects. Clin Nucl Med. 1997;22(10):673–8.PubMedGoogle Scholar
  269. 269.
    Yen TC, et al. Identification of new renal scarring in repeated episodes of acute pyelonephritis using Tc-99m DMSA renal SPECT. Clin Nucl Med. 1998;23(12):828–31.PubMedGoogle Scholar
  270. 270.
    Elison BS, et al. Comparison of DMSA scintigraphy with intravenous urography for the detection of renal scarring and its correlation with vesicoureteric reflux. Br J Urol. 1992;69(3):294–302.PubMedGoogle Scholar
  271. 271.
    Majd M, et al. Acute pyelonephritis: comparison of diagnosis with 99mTc-DMSA, SPECT, spiral CT, MR imaging, and power Doppler US in an experimental pig model. Radiology. 2001;218(1):101–8.PubMedGoogle Scholar
  272. 272.
    Goldraich NP, Ramos OL, Goldraich IH. Urography versus DMSA scan in children with vesicoureteric reflux. Pediatr Nephrol. 1989;3(1):1–5.PubMedGoogle Scholar
  273. 273.
    Merrick MV, Uttley WS, Wild SR. The detection of pyelonephritic scarring in children by radioisotope imaging. Br J Radiol. 1980;53(630):544–56.PubMedGoogle Scholar
  274. 274.
    Patel K, et al. Intra- and interobserver variability in interpretation of DMSA scans using a set of standardized criteria. Pediatr Radiol. 1993;23(7):506–9.PubMedGoogle Scholar
  275. 275.
    Orellana P, et al. Relationship between acute pyelonephritis, renal scarring, and vesicoureteral reflux. Results of a coordinated research project. Pediatr Nephrol. 2004;19(10):1122–6.PubMedGoogle Scholar
  276. 276.
    Stokland E, et al. Imaging of renal scarring. Acta Paediatr Suppl. 1999;88(431):13–21.PubMedGoogle Scholar
  277. 277.
    Szlyk GR, et al. Incidence of new renal parenchymal inflammatory changes following breakthrough urinary tract infection in patients with vesicoureteral reflux treated with antibiotic prophylaxis: evaluation by 99MTechnetium dimercapto-succinic acid renal scan. J Urol. 2003;170(4 Pt 2):1566–8; discussion 1568–9.PubMedGoogle Scholar
  278. 278.
    Preda I, et al. Normal dimercaptosuccinic acid scintigraphy makes voiding cystourethrography unnecessary after urinary tract infection. J Pediatr. 2007;151(6):581–4, 584 e1.PubMedGoogle Scholar
  279. 279.
    Rubenstein JN, et al. The PIC cystogram: a novel approach to identify “occult” vesicoureteral reflux in children with febrile urinary tract infections. J Urol. 2003;169(6):2339–43.PubMedGoogle Scholar
  280. 280.
    Tareen BU, et al. Role of positional instillation of contrast cystography in the algorithm for evaluating children with confirmed pyelonephritis. Urology. 2006;67(5):1055–7; discussion 1058–9.PubMedGoogle Scholar
  281. 281.
    Kavanagh EC, et al. Can MRI replace DMSA in the detection of renal parenchymal defects in children with urinary tract infections? Pediatr Radiol. 2005, 35, 275Google Scholar
  282. 282.
    Chan YL, et al. Potential utility of MRI in the evaluation of children at risk of renal scarring. Pediatr Radiol. 1999;29(11):856–62.PubMedGoogle Scholar
  283. 283.
    Perez-Brayfield MR, et al. A prospective study comparing ultrasound, nuclear scintigraphy and dynamic contrast enhanced magnetic resonance imaging in the evaluation of hydronephrosis. J Urol. 2003;170(4 Pt 1):1330–4.PubMedGoogle Scholar
  284. 284.
    Lonergan GJ, et al. Childhood pyelonephritis: comparison of gadolinium-enhanced MR imaging and renal cortical scintigraphy for diagnosis. Radiology. 1998;207(2):377–84.PubMedGoogle Scholar
  285. 285.
    Sherman RL, et al. N-acetyl-beta-glucosaminidase and beta 2-microglobulin. Their urinary excretion in patients with renal parenchymal disease. Arch Intern Med. 1983;143(6):1183–5.PubMedGoogle Scholar
  286. 286.
    Mutti A, et al. Urinary excretion of brush-border antigen revealed by monoclonal antibody: early indicator of toxic nephropathy. Lancet. 1985;2(8461):914–7.PubMedGoogle Scholar
  287. 287.
    Konda R, et al. Urinary excretion of epidermal growth factor in children with reflux nephropathy. J Urol. 1997;157(6):2282–6.PubMedGoogle Scholar
  288. 288.
    Haraoka M, et al. Elevated interleukin-8 levels in the urine of children with renal scarring and/or vesicoureteral reflux. J Urol. 1996;155(2):678–80.PubMedGoogle Scholar
  289. 289.
    Ninan GK, Jutley RS, Eremin O. Urinary cytokines as markers of reflux nephropathy. J Urol. 1999;162(5):1739–42.PubMedGoogle Scholar
  290. 290.
    Komeyama T, et al. Value of urinary endothelin-1 in patients with primary vesicoureteral reflux. Nephron. 1993;65(4):537–40.PubMedGoogle Scholar
  291. 291.
    Walker RD, Garin EH. Urinary prostaglandin E2 in patients with vesicoureteral reflux. Child Nephrol Urol. 1990;10(1):18–21.PubMedGoogle Scholar
  292. 292.
    Tomlinson PA. Low molecular weight proteins in children with renal disease. Pediatr Nephrol. 1992;6(6):565–71.PubMedGoogle Scholar
  293. 293.
    Salvaggio E, et al. Beta 2 microglobulin in the diagnosis of reflux nephropathy in childhood. Pediatr Med Chir. 1988;10(1):83–8.PubMedGoogle Scholar
  294. 294.
    Quattrin T, et al. Microalbuminuria in an adolescent cohort with insulin-dependent diabetes mellitus. Clin Pediatr (Phila). 1995;34(1):12–7.Google Scholar
  295. 295.
    Lama G, et al. Angiotensin converting enzyme inhibitors and reflux nephropathy: 2-year follow-up. Pediatr Nephrol. 1997;11(6):714–8.PubMedGoogle Scholar
  296. 296.
    Ohtomo Y, et al. Angiotensin converting enzyme gene polymorphism in primary vesicoureteral reflux. Pediatr Nephrol. 2001;16(8):648–52.PubMedGoogle Scholar
  297. 297.
    Small G, et al. Hemolytic uremic syndrome: defining the need for long-term follow-up. Clin Nephrol. 1999;52(6):352–6.PubMedGoogle Scholar
  298. 298.
    Shakil A, et al. Clinical inquiries. Do antibiotics prevent recurrent UTI in children with anatomic abnormalities? J Fam Pract. 2004;53(6):498–500.PubMedGoogle Scholar
  299. 299.
    Brendstrup L, et al. Nitrofurantoin versus trimethoprim prophylaxis in recurrent urinary tract infection in children. A randomized, double-blind study. Acta Paediatr Scand. 1990;79(12):1225–34.PubMedGoogle Scholar
  300. 300.
    Sullivan TD, Ellerstein NS, Neter E. The effects of ampicillin and trimethoprim/sulfamethoxazole on the periurethral flora of children with urinary tract infection. Infection. 1980;8 Suppl 3:S339–41.Google Scholar
  301. 301.
    Ellerstein NS, et al. Trimethoprim/sulfamethoxazole and ampicillin in the treatment of acute urinary tract infections in children: a double-blind study. Pediatrics. 1977;60(2):245–7.PubMedGoogle Scholar
  302. 302.
    Thompson M, et al. Timing of follow-up voiding cystourethrogram in children with primary vesicoureteral reflux: development and application of a clinical algorithm. Pediatrics. 2005;115(2):426–34.PubMedGoogle Scholar
  303. 303.
    Cooper CS, et al. The outcome of stopping prophylactic antibiotics in older children with vesicoureteral reflux. J Urol. 2000;163(1):269–72; discussion 272–3.PubMedGoogle Scholar
  304. 304.
    Allen UD, et al. Risk factors for resistance to “first-line” antimicrobials among urinary tract isolates of Escherichia coli in children. CMAJ. 1999;160(10):1436–40.PubMedCentralPubMedGoogle Scholar
  305. 305.
    Karpman E, Kurzrock EA. Adverse reactions of nitrofurantoin, trimethoprim and sulfamethoxazole in children. J Urol. 2004;172(2):448–53.PubMedGoogle Scholar
  306. 306.
    Uhari M, Nuutinen M, Turtinen J. Adverse reactions in children during long-term antimicrobial therapy. Pediatr Infect Dis J. 1996;15(5):404–8.PubMedGoogle Scholar
  307. 307.
    Bollgren I. Antibacterial prophylaxis in children with urinary tract infection. Acta Paediatr Suppl. 1999;88(431):48–52.PubMedGoogle Scholar
  308. 308.
    Conway PH, et al. Recurrent urinary tract infections in children: risk factors and association with prophylactic antimicrobials. JAMA. 2007;298(2):179–86.PubMedGoogle Scholar
  309. 309.
    Williams G, Lee A, Craig J. Antibiotics for the prevention of urinary tract infection in children: a systematic review of randomized controlled trials. J Pediatr. 2001;138(6):868–74.PubMedGoogle Scholar
  310. 310.
    Gordon I, et al. Primary vesicoureteric reflux as a predictor of renal damage in children hospitalized with urinary tract infection: a systematic review and meta-analysis. J Am Soc Nephrol. 2003;14(3):739–44.PubMedGoogle Scholar
  311. 311.
    Garin EH, et al. Clinical significance of primary vesicoureteral reflux and urinary antibiotic prophylaxis after acute pyelonephritis: a multicenter, randomized, controlled study. Pediatrics. 2006;117(3):626–32.PubMedGoogle Scholar
  312. 312.
    Montini G, et al. Prophylaxis after first febrile urinary tract infection in children? A multicenter, randomized, controlled, noninferiority trial. Pediatrics. 2008;122(5):1064–71.PubMedGoogle Scholar
  313. 313.
    Craig JC, et al. Antibiotic prophylaxis and recurrent urinary tract infection in children. N Engl J Med. 2009;361(18):1748–59.PubMedGoogle Scholar
  314. 314.
    Brandstrom P, et al. The Swedish reflux trial in children: I. Study design and study population characteristics. J Urol. 2010;184(1):274–9.PubMedGoogle Scholar
  315. 315.
    Roussey-Kesler G, et al. Antibiotic prophylaxis for the prevention of recurrent urinary tract infection in children with low grade vesicoureteral reflux: results from a prospective randomized study. J Urol. 2008;179(2):674–9; discussion 679.PubMedGoogle Scholar
  316. 316.
    Brandstrom P, et al. The Swedish reflux trial in children: III. Urinary tract infection pattern. J Urol. 2010;184(1):286–91.PubMedGoogle Scholar
  317. 317.
    Brandstrom P, et al. The Swedish reflux trial in children: IV. Renal damage. J Urol. 2010;184(1):292–7.PubMedGoogle Scholar
  318. 318.
    O’Regan S, et al. Constipation a commonly unrecognized cause of enuresis. Am J Dis Child. 1986;140(3):260–1.PubMedGoogle Scholar
  319. 319.
    Herndon CD, Decambre M, McKenna PH. Interactive computer games for treatment of pelvic floor dysfunction. J Urol. 2001;166(5):1893–8.PubMedGoogle Scholar
  320. 320.
    Upadhyay J, et al. Use of the dysfunctional voiding symptom score to predict resolution of vesicoureteral reflux in children with voiding dysfunction. J Urol. 2003;169(5):1842–6; discussion 1846; author reply 1846.PubMedGoogle Scholar
  321. 321.
    Praga M, et al. Long-term beneficial effects of angiotensin-converting enzyme inhibition in patients with nephrotic proteinuria. Am J Kidney Dis. 1992;20(3):240–8.PubMedGoogle Scholar
  322. 322.
    Litwin M, et al. Add-on therapy with angiotensin II receptor 1 blocker in children with chronic kidney disease already treated with angiotensin-converting enzyme inhibitors. Pediatr Nephrol. 2006;21(11):1716–22.PubMedGoogle Scholar
  323. 323.
    Risdon RA. The small scarred kidney in childhood. Pediatr Nephrol. 1993;7(4):361–4.PubMedGoogle Scholar
  324. 324.
    Huang YY, et al. Adjunctive oral methylprednisolone in pediatric acute pyelonephritis alleviates renal scarring. Pediatrics. 2011;128(3):e496–504.PubMedGoogle Scholar
  325. 325.
    Dalirani R, et al. Role of vitamin A in preventing renal scarring after acute pyelonephritis. Iran J Kidney Dis. 2011;5(5):320–3.PubMedGoogle Scholar
  326. 326.
    Ayazi P, et al. The effect of vitamin A on renal damage following acute pyelonephritis in children. Eur J Pediatr. 2011;170(3):347–50.PubMedGoogle Scholar
  327. 327.
    Gruneberg RN, et al. Bowel flora in urinary tract infection: effect of chemotherapy with special reference to cotrimoxazole. Kidney Int Suppl. 1975;4:S122–9.PubMedGoogle Scholar
  328. 328.
    Olbing H, et al. Renal growth in children with severe vesicoureteral reflux: 10-year prospective study of medical and surgical treatment: the International Reflux Study in Children (European branch). Radiology. 2000;216(3):731–7.PubMedGoogle Scholar
  329. 329.
    Diamond DA, Mattoo TK. Endoscopic treatment of primary vesicoureteral reflux. N Engl J Med. 2012;366(13):1218–26.PubMedGoogle Scholar
  330. 330.
    O’Donnell B, Puri P. Technical refinements in endoscopic correction of vesicoureteral reflux. J Urol. 1988;140(5 Pt 2):1101–2.PubMedGoogle Scholar
  331. 331.
    Leonard MP, et al. Endoscopic injection of glutaraldehyde cross-linked bovine dermal collagen for correction of vesicoureteral reflux. J Urol. 1991;145(1):115–9.PubMedGoogle Scholar
  332. 332.
    Atala A, et al. Endoscopic treatment of vesicoureteral reflux with a self-detachable balloon system. J Urol. 1992;148(2 Pt 2):724–7.PubMedGoogle Scholar
  333. 333.
    Diamond DA, Caldamone AA. Endoscopic correction of vesicoureteral reflux in children using autologous chondrocytes: preliminary results. J Urol. 1999;162(3 Pt 2):1185–8.PubMedGoogle Scholar
  334. 334.
    Elder JS, et al. Endoscopic therapy for vesicoureteral reflux: a meta-analysis. I. Reflux resolution and urinary tract infection. J Urol. 2006;175(2):716–22.PubMedGoogle Scholar
  335. 335.
    Lendvay TS, et al. The evolution of vesicoureteral reflux management in the era of dextranomer/hyaluronic acid copolymer: a pediatric health information system database study. J Urol. 2006;176(4 Pt 2):1864–7.PubMedGoogle Scholar
  336. 336.
    Routh JC, Inman BA, Reinberg Y. Dextranomer/hyaluronic acid for pediatric vesicoureteral reflux: systematic review. Pediatrics. 2010;125(5):1010–9.PubMedGoogle Scholar
  337. 337.
    Lackgren G, et al. Long-term followup of children treated with dextranomer/hyaluronic acid copolymer for vesicoureteral reflux. J Urol. 2001;166(5):1887–92.PubMedGoogle Scholar
  338. 338.
    Stenberg AM, et al. Lack of distant migration after injection of a 125iodine labeled dextranomer based implant into the rabbit bladder. J Urol. 1997;158(5):1937–41.PubMedGoogle Scholar
  339. 339.
    Perez-Brayfield M, et al. Endoscopic treatment with dextranomer/hyaluronic acid for complex cases of vesicoureteral reflux. J Urol. 2004;172(4 Pt 2):1614–6.PubMedGoogle Scholar
  340. 340.
    Vandersteen DR, et al. Postoperative ureteral obstruction after subureteral injection of dextranomer/hyaluronic acid copolymer. J Urol. 2006;176(4 Pt 1):1593–5.PubMedGoogle Scholar
  341. 341.
    Nelson CP, Chow JS. Dextranomer/hyaluronic acid copolymer (Deflux) implants mimicking distal ureteral calculi on CT. Pediatr Radiol. 2008, 38, 104Google Scholar
  342. 342.
    Lakshmanan Y, Fung LC. Laparoscopic extravesicular ureteral reimplantation for vesicoureteral reflux: recent technical advances. J Endourol. 2000;14(7):589–93; discussion 593–4.PubMedGoogle Scholar
  343. 343.
    Shu T, Cisek Jr LJ, Moore RG. Laparoscopic extravesical reimplantation for postpubertal vesicoureteral reflux. J Endourol. 2004;18(5):441–6.PubMedGoogle Scholar
  344. 344.
    Kutikov A, et al. Initial experience with laparoscopic transvesical ureteral reimplantation at the Children’s Hospital of Philadelphia. J Urol. 2006;176(5):2222–5; discussion 2225–6.PubMedGoogle Scholar
  345. 345.
    Kaplan WE, Firlit CF. Management of reflux in the myelodysplastic child. J Urol. 1983;129(6):1195–7.PubMedGoogle Scholar
  346. 346.
    Kennelly MJ, et al. Outcome analysis of bilateral Cohen cross-trigonal ureteroneocystostomy. Urology. 1995;46(3):393–5.PubMedGoogle Scholar
  347. 347.
    Sheu JC, et al. Results of surgery for vesicoureteral reflux in children: 6 years’ experience in an Asian country. Pediatr Surg Int. 1998;13(2–3):138–40.PubMedGoogle Scholar
  348. 348.
    Hoenig DM, et al. Contralateral reflux after unilateral ureteral reimplantation. J Urol. 1996;156(1):196–7.PubMedGoogle Scholar
  349. 349.
    Jodal U, Lindberg U. Guidelines for management of children with urinary tract infection and vesico-ureteric reflux. Recommendations from a Swedish state-of-the-art conference. Swedish Medical Research Council. Acta Paediatr Suppl. 1999;88(431):87–9.PubMedGoogle Scholar
  350. 350.
    National Institute for Health and Clinical Excellence (NICE). Urinary tract infection in children. 2007. http://guidance.nice.org.uk/CG54
  351. 351.
    Roberts KB. Urinary tract infection: clinical practice guideline for the diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months. Pediatrics. 2011;128(3):595–610.PubMedGoogle Scholar
  352. 352.
    Ammenti A, et al. Febrile urinary tract infections in young children: recommendations for the diagnosis, treatment and follow-up. Acta Paediatr. 2012;101(5):451–7.PubMedGoogle Scholar
  353. 353.
    Saadeh SA, Mattoo TK. Managing urinary tract infections. Pediatr Nephrol. 2011;26(11):1967–76.PubMedCentralPubMedGoogle Scholar
  354. 354.
    Mattoo TK, Moxey-Mims M. Reflux nephropathy. In: Kimmel PL, Rosenberg M, editors. Chronic renal disease. Elsevier Inc, London UK; 2014, 825–832.Google Scholar
  355. 355.
    Baracco R, Mattoo KT. Diagnosis and management of urinary tract infections and vesicoureteral reflux in the neonate. Clin Perinatol. 2014, 41, 633Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tej K. Mattoo
    • 1
  • Ranjiv Mathews
    • 2
  • Indra R. Gupta
    • 3
  1. 1.Pediatric Nephrology and HypertensionWayne State University School of Medicine, Children’s Hospital of MichiganDetroitUSA
  2. 2.The Nevada School of MedicineThe Johns Hopkins School of MedicineLas VegasUSA
  3. 3.Department of Pediatrics and Department of Human GeneticsMcGill UniversityMontréalCanada

Personalised recommendations