Renal Tubular Acidosis in Children

Living reference work entry

Abstract

Renal tubular acidosis (RTA) is a condition in which there is a defect in renal excretion of hydrogen ion, or reabsorption of bicarbonate, or both, which occurs in the absence of or out of proportion to an impairment in the glomerular filtration rate [1]. Thus, RTA is distinguished from the renal acidosis that develops as a result of advanced chronic kidney disease [2–4]. Albright originally described the disease as “renal acidosis resulting from tubular insufficiency without glomerular insufficiency” to emphasize this distinction [5]. The term was reduced to “renal tubular acidosis” by Pines and Mudge in their studies published in 1951 [6]. These renal tubular abnormalities can occur as an inherited disease or can result from other disorders or toxins that affect the renal tubules.

Keywords

Proximal Tubule Renal Tubular Acidosis Ammonium Excretion Fanconi Syndrome Distal Nephron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rodriguez-Soriano J, Edelmann Jr CM. Renal tubular acidosis. Annu Rev Med. 1969;20:363–82.PubMedGoogle Scholar
  2. 2.
    Davies HE, Wrong O. Acidity of urine and excretion of ammonium in renal disease. Lancet. 1957;273(6996):625.PubMedGoogle Scholar
  3. 3.
    Schwartz WB, Hall 3rd PW, Hays RM, Relman AS. On the mechanism of acidosis in chronic renal disease. J Clin Invest. 1959;38(1, Part 1):39–52.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Wrong O, Davies HE. The excretion of acid in renal disease. Q J Med. 1959;28(110):259–313.PubMedGoogle Scholar
  5. 5.
    Albright F, Burnett CH, et al. Osteomalacia and late rickets; the various etiologies met in the United States with emphasis on that resulting from a specific form of renal acidosis, the therapeutic indications for each etiological sub-group, and the relationship between osteomalacia and Milkman’s syndrome. Medicine. 1946;25(4):399–479.PubMedGoogle Scholar
  6. 6.
    Pines KL, Mudge GH. Renal tubular acidosis with osteomalacia; report of 3 cases. Am J Med. 1951;11(3):302–11.PubMedGoogle Scholar
  7. 7.
    Lightwood R. Calcium infarction of the kidneys in infants. Arch Dis Child. 1935;10:205.Google Scholar
  8. 8.
    Butler AM, Wilson JL, Farber S. Dehydration and acidosis with calcification at renal tubules. J Pediatr. 1936;8(4):489–99.Google Scholar
  9. 9.
    Lightwood R, Payne WW, Black JA. Infantile renal acidosis. Pediatrics. 1953;12(6):628–44.PubMedGoogle Scholar
  10. 10.
    Baines AM, Barelay JA, Cooke WT. Nephrocalcinosis associated with hyperchloremia and low plasma bicarbonate. QJM. 1945;14:113–23.Google Scholar
  11. 11.
    Reynolds TB. Observations on the pathogenesis of renal tubular acidosis. Am J Med. 1958;25(4):503–15.PubMedGoogle Scholar
  12. 12.
    Elkinton JR. Renal acidosis. Am J Med. 1960;28:165–8.PubMedGoogle Scholar
  13. 13.
    Elkinton JR. The kidney and hydrogen ion metabolism. Bibl Paediatr. 1960;74:99–123.PubMedGoogle Scholar
  14. 14.
    Elkinton JR, Huth EJ, Webster Jr GD, Mc CR. The renal excretion of hydrogen ion in renal tubular acidosis. I. quantitative assessment of the response to ammonium chloride as an acid load. Am J Med. 1960;29:554–75.PubMedGoogle Scholar
  15. 15.
    Berliner RW. Homer Smith: his contribution to physiology. J Am Soc Nephrol. 1995;12:1988–92.Google Scholar
  16. 16.
    Stapleton T. Idiopathic renal acidosis in an infant with excessive loss of bicarbonate in the urine. Lancet. 1949;1(6556):683–5.PubMedGoogle Scholar
  17. 17.
    Rodriguez Soriano J, Boichis H, Stark H, Edelmann Jr CM. Proximal renal tubular acidosis. A defect in bicarbonate reabsorption with normal urinary acidification. Pediatr Res. 1967;1(2):81–98.Google Scholar
  18. 18.
    Soriano JR, Boichis H, Edelmann Jr CM. Bicarbonate reabsorption and hydrogen ion excretion in children with renal tubular acidosis. J Pediatr. 1967;71(6):802–13.PubMedGoogle Scholar
  19. 19.
    Morris Jr RC. Renal tubular acidosis. Mechanisms, classification and implications. N Engl J Med. 1969;281(25):1405–13.PubMedGoogle Scholar
  20. 20.
    McSherry E, Sebastian A, Morris Jr RC. Renal tubular acidosis in infants: the several kinds, including bicarbonate-wasting, classic renal tubular acidosis. J Clin Invest. 1972;51(3):499–514.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Gennari FJ, Cohen JJ. Renal tubular acidosis. Annu Rev Med. 1978;29:521–41.PubMedGoogle Scholar
  22. 22.
    Williams JS, Williams GH. 50th anniversary of aldosterone. J Clin Endocrinol Metab. 2003;88(6):2364–72.PubMedGoogle Scholar
  23. 23.
    Perez GO, Oster JR, Vaamonde CA. Renal acidosis and renal potassium handling in selective hypoaldosteronism. Am J Med. 1974;57(5):809–16.PubMedGoogle Scholar
  24. 24.
    Perez GO, Oster JR, Vaamonde CA. Renal acidification in patients with mineralocorticoid deficiency. Nephron. 1976;17(6):461–73.PubMedGoogle Scholar
  25. 25.
    Rocher LL, Tannen RL. The clinical spectrum of renal tubular acidosis. Annu Rev Med. 1986;37:319–31.Google Scholar
  26. 26.
    Carlisle EJ, Donnelly SM, Halperin ML. Renal tubular acidosis (RTA): recognize the ammonium defect and pH or get the urine pH. Pediatr Nephrol. 1991;5(2):242–8.PubMedGoogle Scholar
  27. 27.
    Halperin ML, Goldstein MB, Richardson RM, Stinebaugh BJ. Distal renal tubular acidosis syndromes: a pathophysiological approach. Am J Nephrol. 1985;5(1):1–8.PubMedGoogle Scholar
  28. 28.
    Halperin ML, Jungas RL. Metabolic production and renal disposal of hydrogen ions. Kidney Int. 1983;24(6):709–13.Google Scholar
  29. 29.
    Chan JC. The influence of dietary intake on endogenous acid production. Theoretical and experimental background. Nutr Metab. 1974;16(1):1–9.PubMedGoogle Scholar
  30. 30.
    Chan JCM. Calcium and hydrogen ion metabolism in children with classic (type I/distal) renal tubular acidosis. Ann Nutr Metab. 1981;25(2):65–78.Google Scholar
  31. 31.
    Kildeberg P, Engel K, Winters RW. Balance of net acid in growing infants. Endogenous and transintestinal aspects. Acta Paediatr Scand. 1969;58(4):321–9.PubMedGoogle Scholar
  32. 32.
    Alpern RJ. Cell mechanisms of proximal tubule acidification. Physiol Rev. 1990;70(1):79–114.PubMedGoogle Scholar
  33. 33.
    Boron WF. Acid–base transport by the renal proximal tubule. J Am Soc Nephrol. 2006;17(9):2368–82.PubMedGoogle Scholar
  34. 34.
    Boron WF, Boulpaep EL. The electrogenic Na/HCO3 cotransporter. Kidney Int. 1989;36(3):392–402.PubMedGoogle Scholar
  35. 35.
    Boron WF, Fong P, Hediger MA, Boulpaep EL, Romero MF. The electrogenic Na/HCO3 cotransporter. Wien Klin Wochenschr. 1997;109(12–13):445–56.PubMedGoogle Scholar
  36. 36.
    DuBose Jr TD. Reclamation of filtered bicarbonate. Kidney Int. 1990;38(4):584–9.PubMedGoogle Scholar
  37. 37.
    Bobulescu IA, Moe OW. Na+/H+ exchangers in renal regulation of acid–base balance. Semin Nephrol. 2006;26(5):334–44.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Murer H, Hopfer U, Kinne R. Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem J. 1976;154(3):597–604.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Preisig PA, Ives HE, Cragoe Jr EJ, Alpern RJ, Rector Jr FC. Role of the Na+/H+ antiporter in rat proximal tubule bicarbonate absorption. J Clin Invest. 1987;80(4):970–8.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Aronson PS, Suhm MA, Nee J. Interaction of external H+ with the Na+−H+ exchanger in renal microvillus membrane vesicles. J Biol Chem. 1983;258(11):6767–71.PubMedGoogle Scholar
  41. 41.
    Kinsella JL, Aronson PS. Interaction of NH4 + and Li+ with the renal microvillus membrane Na+−H+ exchanger. Am J Physiol. 1981;241(5):C220–6.PubMedGoogle Scholar
  42. 42.
    Weiner ID, Verlander JW. Role of NH3 and NH4 + transporters in renal acid–base transport. Am J Physiol Renal Physiol. 2011;300(1):F11–23.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Nagami GT. Role of angiotensin II in the enhancement of ammonia production and secretion by the proximal tubule in metabolic acidosis. Am J Physiol Renal Physiol. 2008;294(4):F874–80.PubMedGoogle Scholar
  44. 44.
    Nagami GT, Chang JA, Plato ME, Santamaria R. Acid loading in vivo and low pH in culture increase angiotensin receptor expression: enhanced ammoniagenic response to angiotensin II. Am J Physiol Renal Physiol. 2008;295(6):F1864–70.PubMedGoogle Scholar
  45. 45.
    Zimolo Z, Montrose MH, Murer H. H+ extrusion by an apical vacuolar-type H(+)-ATPase in rat renal proximal tubules. J Membr Biol. 1992;126(1):19–26.PubMedGoogle Scholar
  46. 46.
    Breton S. The cellular physiology of carbonic anhydrases. JOP. 2001;2(4 Suppl):159–64.PubMedGoogle Scholar
  47. 47.
    Purkerson JM, Schwartz GJ. The role of carbonic anhydrases in renal physiology. Kidney Int. 2007;71(2):103–15.PubMedGoogle Scholar
  48. 48.
    Schwartz GJ. Physiology and molecular biology of renal carbonic anhydrase. J Nephrol. 2002;15 Suppl 5:S61–74.PubMedGoogle Scholar
  49. 49.
    Grassl SM, Aronson PS. Na+/HCO3-co-transport in basolateral membrane vesicles isolated from rabbit renal cortex. J Biol Chem. 1986;261(19):8778–83.PubMedGoogle Scholar
  50. 50.
    Romero MF, Hediger MA, Boulpaep EL, Boron WF. Expression cloning and characterization of a renal electrogenic Na+/HCO3 cotransporter. Nature. 1997;387(6631):409–13.Google Scholar
  51. 51.
    Pitts RF, Ayer JL, Schiess WA, Miner P. The renal regulation of acid–base balance in man. III. The reabsorption and excretion of bicarbonate. J Clin Invest. 1949;28(1):35–44.PubMedCentralGoogle Scholar
  52. 52.
    Pitts RF. Renal production and excretion of ammonia. Am J Med. 1964;36:720–42.PubMedGoogle Scholar
  53. 53.
    Bank N, Schwartz WB. Influence of certain urinary solutes on acidic dissociation constant of ammonium at 37 degrees C. J Appl Physiol. 1960;15:125–7.PubMedGoogle Scholar
  54. 54.
    DuBose Jr TD, Good DW, Hamm LL, Wall SM. Ammonium transport in the kidney: new physiological concepts and their clinical implications. J Am Soc Nephrol. 1991;1(11):1193–203.PubMedGoogle Scholar
  55. 55.
    Karim Z, Szutkowska M, Vernimmen C, Bichara M. Renal handling of NH3/NH4 +: recent concepts. Nephron Physiol. 2005;101(4):p77–81.PubMedGoogle Scholar
  56. 56.
    Karim Z, Szutkowska M, Vernimmen C, Bichara M. Recent concepts concerning the renal handling of NH3/NH4 +. J Nephrol. 2006;19 Suppl 9:S27–32.PubMedGoogle Scholar
  57. 57.
    Good DW, Knepper MA. Ammonia transport in the mammalian kidney. Am J Physiol. 1985;248(4 Pt 2):F459–71.PubMedGoogle Scholar
  58. 58.
    Curthoys NP, Gstraunthaler G. Mechanism of increased renal gene expression during metabolic acidosis. Am J Physiol Renal Physiol. 2001;281(3):F381–90.PubMedGoogle Scholar
  59. 59.
    Madison LL, Seldin DW. Ammonia excretion and renal enzymatic adaptation in human subjects, as disclosed by administration of precursor amino acids. J Clin Invest. 1958;37(11):1615–27.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Capasso G, Unwin R, Rizzo M, Pica A, Giebisch G. Bicarbonate transport along the loop of Henle: molecular mechanisms and regulation. J Nephrol. 2002;15 Suppl 5:S88–96.PubMedGoogle Scholar
  61. 61.
    Good DW, Knepper MA, Burg MB. Ammonia and bicarbonate transport by thick ascending limb of rat kidney. Am J Physiol. 1984;247(1 Pt 2):F35–44.PubMedGoogle Scholar
  62. 62.
    Good DW, Knepper MA, Burg MB. Ammonia absorption by the thick ascending limb of Henle’s loop. Contrib Nephrol. 1985;47:110–5.PubMedGoogle Scholar
  63. 63.
    Breton S, Brown D. New insights into the regulation of V-ATPase-dependent proton secretion. Am J Physiol Renal Physiol. 2007;292(1):F1–10.PubMedGoogle Scholar
  64. 64.
    Karet FE. Physiological and metabolic implications of V-ATPase isoforms in the kidney. J Bioenerg Biomembr. 2005;37(6):425–9.PubMedGoogle Scholar
  65. 65.
    Valles P, Lapointe MS, Wysocki J, Batlle D. Kidney vacuolar H+−ATPase: physiology and regulation. Semin Nephrol. 2006;26(5):361–74.PubMedGoogle Scholar
  66. 66.
    Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP. Renal vacuolar H+−ATPase. Physiol Rev. 2004;84(4):1263–314.PubMedGoogle Scholar
  67. 67.
    Alper SL. Molecular physiology of SLC4 anion exchangers. Exp Physiol. 2006;91(1):153–61.PubMedGoogle Scholar
  68. 68.
    Romero MF, Fulton CM, Boron WF. The SLC4 family of HCO3 – transporters. Pflugers Arch. 2004;447(5):495–509.PubMedGoogle Scholar
  69. 69.
    Boettger T, Hubner CA, Maier H, Rust MB, Beck FX, Jentsch TJ. Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature. 2002;416(6883):874–8.PubMedGoogle Scholar
  70. 70.
    Kobayashi K, Uchida S, Mizutani S, Sasaki S, Marumo F. Intrarenal and cellular localization of CLC-K2 protein in the mouse kidney. J Am Soc Nephrol. 2001;12(7):1327–34.PubMedGoogle Scholar
  71. 71.
    Gao X, Eladari D, Leviel F, Tew BY, Miro-Julia C, Cheema FH, et al. Deletion of hensin/DMBT1 blocks conversion of beta- to alpha-intercalated cells and induces distal renal tubular acidosis. Proc Natl Acad Sci USA. 2010;107(50):21872–7.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Al-Awqati Q, Gao XB. Differentiation of intercalated cells in the kidney. Physiology (Bethesda). 2011;26(4):266–72.Google Scholar
  73. 73.
    Harrison HE. The Fanconi syndrome. J Chronic Dis. 1958;7(4):346–55.PubMedGoogle Scholar
  74. 74.
    Quigley R. Proximal renal tubular acidosis. J Nephrol. 2006;19 Suppl 9:S41–5.PubMedGoogle Scholar
  75. 75.
    Brenes LG, Brenes JN, Hernandez MM. Familial proximal renal tubular acidosis. A distinct clinical entity. Am J Med. 1977;63(2):244–52.PubMedGoogle Scholar
  76. 76.
    Nash MA, Torrado AD, Greifer I, Spitzer A, Edelmann Jr CM. Renal tubular acidosis in infants and children. Clinical course, response to treatment, and prognosis. J Pediatr. 1972;80(5):738–48.PubMedGoogle Scholar
  77. 77.
    Rodriguez-Soriano J, Vallo A, Castillo G, Oliveros R. Natural history of primary distal renal tubular acidosis treated since infancy. J Pediatr. 1982;101(5):669–76.PubMedGoogle Scholar
  78. 78.
    Brenes LG, Sanchez MI. Impaired urinary ammonium excretion in patients with isolated proximal renal tubular acidosis. J Am Soc Nephrol. 1993;4(4):1073–8.PubMedGoogle Scholar
  79. 79.
    Clarke BL, Wynne AG, Wilson DM, Fitzpatrick LA. Osteomalacia associated with adult Fanconi’s syndrome: clinical and diagnostic features. Clin Endocrinol (Oxf). 1995;43(4):479–90.Google Scholar
  80. 80.
    Taylor HC, Elbadawy EH. Renal tubular acidosis type 2 with Fanconi’s syndrome, osteomalacia, osteoporosis, and secondary hyperaldosteronism in an adult consequent to vitamin D and calcium deficiency: effect of vitamin D and calcium citrate therapy. Endocr Pract. 2006;12(5):559–67.PubMedGoogle Scholar
  81. 81.
    Sebastian A, McSherry E, Morris Jr RC. On the mechanism of renal potassium wasting in renal tubular acidosis associated with the Fanconi syndrome (type 2 RTA). J Clin Invest. 1971;50(1):231–43.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Baum M. The cellular basis of Fanconi syndrome. Hosp Pract (Off Ed). 1993;28(11):137–42, 47–8.Google Scholar
  83. 83.
    Baum M. The Fanconi syndrome of cystinosis: insights into the pathophysiology. Pediatr Nephrol. 1998;12(6):492–7.PubMedGoogle Scholar
  84. 84.
    Gross P, Meye C. Proximal RTA: are all the charts completed yet? Nephrol Dial Transplant. 2008;23(4):1101–2.PubMedGoogle Scholar
  85. 85.
    Morris Jr RC, McSherry E. Symposium on acid–base homeostasis. Renal acidosis. Kidney Int. 1972;1(5):322–40.PubMedGoogle Scholar
  86. 86.
    Katzir Z, Dinour D, Reznik-Wolf H, Nissenkorn A, Holtzman E. Familial pure proximal renal tubular acidosis – a clinical and genetic study. Nephrol Dial Transplant. 2008;23(4):1211–5.PubMedGoogle Scholar
  87. 87.
    Igarashi T, Inatomi J, Sekine T, Cha SH, Kanai Y, Kunimi M, et al. Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities. Nat Genet. 1999;23(3):264–6.PubMedGoogle Scholar
  88. 88.
    Igarashi T, Sekine T, Inatomi J, Seki G. Unraveling the molecular pathogenesis of isolated proximal renal tubular acidosis. J Am Soc Nephrol. 2002;13(8):2171–7.PubMedGoogle Scholar
  89. 89.
    Pushkin A, Kurtz I. SLC4 base (HCO3 , CO3 2−) transporters: classification, function, structure, genetic diseases, and knockout models. Am J Physiol Renal Physiol. 2006;290(3):F580–99.PubMedGoogle Scholar
  90. 90.
    Winsnes A, Monn E, Stokke O, Feyling T. Congenital persistent proximal type renal tubular acidosis in two brothers. Acta Paediatr Scand. 1979;68(6):861–8.PubMedGoogle Scholar
  91. 91.
    Shiohara M, Igarashi T, Mori T, Komiyama A. Genetic and long-term data on a patient with permanent isolated proximal renal tubular acidosis. Eur J Pediatr. 2000;159(12):892–4.PubMedGoogle Scholar
  92. 92.
    Dinour D, Chang MH, Satoh J, Smith BL, Angle N, Knecht A, et al. A novel missense mutation in the sodium bicarbonate cotransporter (NBCe1/SLC4A4) causes proximal tubular acidosis and glaucoma through ion transport defects. J Biol Chem. 2004;279(50):52238–46.PubMedGoogle Scholar
  93. 93.
    Igarashi T, Inatomi J, Sekine T, Seki G, Shimadzu M, Tozawa F, et al. Novel nonsense mutation in the Na+/HCO3 cotransporter gene (SLC4A4) in a patient with permanent isolated proximal renal tubular acidosis and bilateral glaucoma. J Am Soc Nephrol. 2001;12(4):713–8.PubMedGoogle Scholar
  94. 94.
    Igarashi T, Ishii T, Watanabe K, Hayakawa H, Horio K, Sone Y, et al. Persistent isolated proximal renal tubular acidosis – a systemic disease with a distinct clinical entity. Pediatr Nephrol. 1994;8(1):70–1.PubMedGoogle Scholar
  95. 95.
    Usui T, Hara M, Satoh H, Moriyama N, Kagaya H, Amano S, et al. Molecular basis of ocular abnormalities associated with proximal renal tubular acidosis. J Clin Invest. 2001;108(1):107–15.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Bernardo AA, Bernardo CM, Espiritu DJ, Arruda JA. The sodium bicarbonate cotransporter: structure, function, and regulation. Semin Nephrol. 2006;26(5):352–60.PubMedGoogle Scholar
  97. 97.
    Romero MF. Molecular pathophysiology of SLC4 bicarbonate transporters. Curr Opin Nephrol Hypertens. 2005;14(5):495–501.PubMedGoogle Scholar
  98. 98.
    Soleimani M, Burnham CE. Na+:HCO(3−) cotransporters (NBC): cloning and characterization. J Membr Biol. 2001;183(2):71–84.PubMedGoogle Scholar
  99. 99.
    Suzuki M, Seki G, Yamada H, Horita S, Fujita T. Functional roles of electrogenic sodium bicarbonate cotransporter NBCe1 in ocular tissues. Open Ophthalmol J. 2012;6:36–41.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Toye AM, Parker MD, Daly CM, Lu J, Virkki LV, Pelletier MF, et al. The human NBCe1-A mutant R881C, associated with proximal renal tubular acidosis, retains function but is mistargeted in polarized renal epithelia. Am J Physiol Cell Physiol. 2006;291(4):C788–801.PubMedGoogle Scholar
  101. 101.
    Kurtz I, Zhu Q. Proximal renal tubular acidosis mediated by mutations in NBCe1-A: unraveling the transporter’s structure-functional properties. Front Physiol. 2013;4:350.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA. 1983;80(9):2752–6.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Sly WS, Whyte MP, Sundaram V, Tashian RE, Hewett-Emmett D, Guibaud P, et al. Carbonic anhydrase II deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. N Engl J Med. 1985;313(3):139–45.PubMedGoogle Scholar
  104. 104.
    Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR, et al. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet. 1998;19(3):282–5.PubMedGoogle Scholar
  105. 105.
    Choi JY, Shah M, Lee MG, Schultheis PJ, Shull GE, Muallem S, et al. Novel amiloride-sensitive sodium-dependent proton secretion in the mouse proximal convoluted tubule. J Clin Invest. 2000;105(8):1141–6.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Warth R, Barriere H, Meneton P, Bloch M, Thomas J, Tauc M, et al. Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport. Proc Natl Acad Sci USA. 2004;101(21):8215–20.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Morton MJ, Abohamed A, Sivaprasadarao A, Hunter M. pH sensing in the two-pore domain K+ channel, TASK2. Proc Natl Acad Sci USA. 2005;102(44):16102–6.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Gahl WA, Thoene JG, Schneider JA. Cystinosis. N Engl J Med. 2002;347(2):111–21.PubMedGoogle Scholar
  109. 109.
    Kalatzis V, Antignac C. Cystinosis: from gene to disease. Nephrol Dial Transplant. 2002;17(11):1883–6.PubMedGoogle Scholar
  110. 110.
    Kalatzis V, Antignac C. New aspects of the pathogenesis of cystinosis. Pediatr Nephrol. 2003;18(3):207–15.PubMedGoogle Scholar
  111. 111.
    Kalatzis V, Cherqui S, Antignac C, Gasnier B. Cystinosin, the protein defective in cystinosis, is a H(+)-driven lysosomal cystine transporter. Embo J. 2001;20(21):5940–9.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Fanconi G, Bickel H. Die chronische Aminoacidurie (AminosaEurediabetes oder nephrotisch-glukosurischer Zwerg-wuchs) bei der Glykogenose und der Cystinkrankheit. Helv Paediatr Acta. 1949;4(5):359–96.PubMedGoogle Scholar
  113. 113.
    Santer R, Groth S, Kinner M, Dombrowski A, Berry GT, Brodehl J, et al. The mutation spectrum of the facilitative glucose transporter gene SLC2A2 (GLUT2) in patients with Fanconi-Bickel syndrome. Hum Genet. 2002;110(1):21–9.PubMedGoogle Scholar
  114. 114.
    Santer R, Schneppenheim R, Dombrowski A, Gotze H, Steinmann B, Schaub J. Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet. 1997;17(3):324–6.PubMedGoogle Scholar
  115. 115.
    Santer R, Schneppenheim R, Dombrowski A, Gotze H, Steinmann B, Schaub J. Fanconi-Bickel syndrome – a congenital defect of the liver-type facilitative glucose transporter. SSIEM Award. Society for the Study of Inborn Errors of Metabolism. J Inherit Metab Dis. 1998;21(3):191–4.PubMedGoogle Scholar
  116. 116.
    Santer R, Schneppenheim R, Suter D, Schaub J, Steinmann B. Fanconi-Bickel syndrome – the original patient and his natural history, historical steps leading to the primary defect, and a review of the literature. Eur J Pediatr. 1998;157(10):783–97.PubMedGoogle Scholar
  117. 117.
    Santer R, Steinmann B, Schaub J. Fanconi-Bickel syndrome – a congenital defect of facilitative glucose transport. Curr Mol Med. 2002;2(2):213–27.PubMedGoogle Scholar
  118. 118.
    Morris Jr RC. An experimental renal acidification defect in patients with hereditary fructose intolerance. I. Its resemblance to renal tubular acidosis. J Clin Invest. 1968;47(6):1389–98.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Morris Jr RC. An experimental renal acidification defect in patients with hereditary fructose intolerance. II. Its distinction from classic renal tubular acidosis; its resemblance to the renal acidification defect associated with the Fanconi syndrome of children with cystinosis. J Clin Invest. 1968;47(7):1648–63.PubMedCentralPubMedGoogle Scholar
  120. 120.
    Zhang X, Jefferson AB, Auethavekiat V, Majerus PW. The protein deficient in Lowe syndrome is a phosphatidylinositol-4,5-bisphosphate 5-phosphatase. Proc Natl Acad Sci USA. 1995;92(11):4853–6.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Suchy SF, Nussbaum RL. The deficiency of PIP2 5-phosphatase in Lowe syndrome affects actin polymerization. Am J Hum Genet. 2002;71(6):1420–7.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Mehta ZB, Pietka G, Lowe M. The cellular and physiological functions of the Lowe syndrome protein OCRL1. Traffic. 2014;15(5):471–87.PubMedGoogle Scholar
  123. 123.
    Hoopes Jr RR, Shrimpton AE, Knohl SJ, Hueber P, Hoppe B, Matyus J, et al. Dent disease with mutations in OCRL1. Am J Hum Genet. 2005;76(2):260–7.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Devuyst O, Jouret F, Auzanneau C, Courtoy PJ. Chloride channels and endocytosis: new insights from Dent’s disease and ClC-5 knockout mice. Nephron Physiol. 2005;99(3):69–73.Google Scholar
  125. 125.
    Hryciw DH, Ekberg J, Pollock CA, Poronnik P. ClC-5: a chloride channel with multiple roles in renal tubular albumin uptake. Int J Biochem Cell Biol. 2006;38(7):1036–42.PubMedGoogle Scholar
  126. 126.
    Lloyd SE, Pearce SH, Fisher SE, Steinmeyer K, Schwappach B, Scheinman SJ, et al. A common molecular basis for three inherited kidney stone diseases. Nature. 1996;379(6564):445–9.PubMedGoogle Scholar
  127. 127.
    Wang SS, Devuyst O, Courtoy PJ, Wang XT, Wang H, Wang Y, et al. Mice lacking renal chloride channel, CLC-5, are a model for Dent’s disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. Hum Mol Genet. 2000;9(20):2937–45.PubMedGoogle Scholar
  128. 128.
    Claverie-Martin F, Ramos-Trujillo E, Garcia-Nieto V. Dent’s disease: clinical features and molecular basis. Pediatr Nephrol. 2011;26(5):693–704.PubMedGoogle Scholar
  129. 129.
    Novarino G, Weinert S, Rickheit G, Jentsch TJ. Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis. Science. 2010;328(5984):1398–401.PubMedGoogle Scholar
  130. 130.
    Reed AA, Loh NY, Terryn S, Lippiat JD, Partridge C, Galvanovskis J, et al. CLC-5 and KIF3B interact to facilitate CLC-5 plasma membrane expression, endocytosis, and microtubular transport: relevance to pathophysiology of Dent’s disease. Am J Physiol Renal Physiol. 2010;298(2):F365–80.PubMedCentralPubMedGoogle Scholar
  131. 131.
    Lin Z, Jin S, Duan X, Wang T, Martini S, Hulamm P, et al. Chloride channel (Clc)-5 is necessary for exocytic trafficking of Na+/H+ exchanger 3 (NHE3). J Biol Chem. 2011;286(26):22833–45.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Gailly P, Jouret F, Martin D, Debaix H, Parreira KS, Nishita T, et al. A novel renal carbonic anhydrase type III plays a role in proximal tubule dysfunction. Kidney Int. 2008;74(1):52–61.PubMedGoogle Scholar
  133. 133.
    Aperia A, Bergqvist G, Linne T, Zetterstrom R. Familial Fanconi syndrome with malabsorption and galactose intolerance, normal kinase and transferase activity. A report on two siblings. Acta Paediatr Scand. 1981;70(4):527–33.PubMedGoogle Scholar
  134. 134.
    Endo F, Sun MS. Tyrosinaemia type I and apoptosis of hepatocytes and renal tubular cells. J Inherit Metab Dis. 2002;25(3):227–34.PubMedGoogle Scholar
  135. 135.
    Kubo S, Sun M, Miyahara M, Umeyama K, Urakami K, Yamamoto T, et al. Hepatocyte injury in tyrosinemia type 1 is induced by fumarylacetoacetate and is inhibited by caspase inhibitors. Proc Natl Acad Sci USA. 1998;95(16):9552–7.PubMedCentralPubMedGoogle Scholar
  136. 136.
    Chen YT. Type I, glycogen storage disease: kidney involvement, pathogenesis and its treatment. Pediatr Nephrol. 1991;5(1):71–6.PubMedGoogle Scholar
  137. 137.
    Chen YT, Coleman RA, Scheinman JI, Kolbeck PC, Sidbury JB. Renal disease in type I glycogen storage disease. N Engl J Med. 1988;318(1):7–11.PubMedGoogle Scholar
  138. 138.
    Ozen H. Glycogen storage diseases: new perspectives. World J Gastroenterol. 2007;13(18):2541–53.PubMedCentralPubMedGoogle Scholar
  139. 139.
    Niaudet P, Heidet L, Munnich A, Schmitz J, Bouissou F, Gubler MC, et al. Deletion of the mitochondrial DNA in a case of de Toni-Debre-Fanconi syndrome and Pearson syndrome. Pediatr Nephrol. 1994;8(2):164–8.PubMedGoogle Scholar
  140. 140.
    Niaudet P, Rotig A. Renal involvement in mitochondrial cytopathies. Pediatr Nephrol. 1996;10(3):368–73.PubMedGoogle Scholar
  141. 141.
    Niaudet P, Rotig A. The kidney in mitochondrial cytopathies. Kidney Int. 1997;51(4):1000–7.PubMedGoogle Scholar
  142. 142.
    Rotig A. Renal disease and mitochondrial genetics. J Nephrol. 2003;16(2):286–92.PubMedGoogle Scholar
  143. 143.
    Ezgu F, Senaca S, Gunduz M, Tumer L, Hasanoglu A, Tiras U, et al. Severe renal tubulopathy in a newborn due to BCS1L gene mutation: effects of different treatment modalities on the clinical course. Gene. 2013;528(2):364–6.PubMedGoogle Scholar
  144. 144.
    Gai X, Ghezzi D, Johnson MA, Biagosch CA, Shamseldin HE, Haack TB, et al. Mutations in FBXL4, encoding a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy. Am J Hum Genet. 2013;93(3):482–95.PubMedCentralPubMedGoogle Scholar
  145. 145.
    Tucker EJ, Mimaki M, Compton AG, McKenzie M, Ryan MT, Thorburn DR. Next-generation sequencing in molecular diagnosis: NUBPL mutations highlight the challenges of variant detection and interpretation. Hum Mutat. 2012;33(2):411–8.PubMedGoogle Scholar
  146. 146.
    Pontoglio M, Barra J, Hadchouel M, Doyen A, Kress C, Bach JP, et al. Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell. 1996;84(4):575–85.PubMedGoogle Scholar
  147. 147.
    Pontoglio M. Hepatocyte nuclear factor 1, a transcription factor at the crossroads of glucose homeostasis. J Am Soc Nephrol. 2000;11 Suppl 16:S140–3.PubMedGoogle Scholar
  148. 148.
    Pontoglio M, Prie D, Cheret C, Doyen A, Leroy C, Froguel P, et al. HNF1alpha controls renal glucose reabsorption in mouse and man. EMBO Rep. 2000;1(4):359–65.PubMedCentralPubMedGoogle Scholar
  149. 149.
    Tanaka K, Terryn S, Geffers L, Garbay S, Pontoglio M, Devuyst O. The transcription factor HNF1alpha regulates expression of chloride-proton exchanger ClC-5 in the renal proximal tubule. Am J Physiol Renal Physiol. 2010;299(6):F1339–47.PubMedGoogle Scholar
  150. 150.
    Klootwijk ED, Reichold M, Helip-Wooley A, Tolaymat A, Broeker C, Robinette SL, et al. Mistargeting of peroxisomal EHHADH and inherited renal Fanconi’s syndrome. N Engl J Med. 2014;370(2):129–38.PubMedGoogle Scholar
  151. 151.
    Supuran CT. Carbonic anhydrases – an overview. Curr Pharm Des. 2008;14(7):603–14.PubMedGoogle Scholar
  152. 152.
    Supuran CT. Carbonic anhydrases as drug targets. Curr Pharm Des. 2008;14(7):601–2.PubMedGoogle Scholar
  153. 153.
    Supuran CT, Scozzafava A, Casini A. Carbonic anhydrase inhibitors. Med Res Rev. 2003;23(2):146–89.PubMedGoogle Scholar
  154. 154.
    Izzedine H, Launay-Vacher V, Isnard-Bagnis C, Deray G. Drug-induced Fanconi’s syndrome. Am J Kidney Dis. 2003;41(2):292–309.PubMedGoogle Scholar
  155. 155.
    Guerrini R, Parmeggiani L. Topiramate and its clinical applications in epilepsy. Expert Opin Pharmacother. 2006;7(6):811–23.PubMedGoogle Scholar
  156. 156.
    Perucca E. A pharmacological and clinical review on topiramate, a new antiepileptic drug. Pharmacol Res. 1997;35(4):241–56.PubMedGoogle Scholar
  157. 157.
    Barbier O, Jacquillet G, Tauc M, Cougnon M, Poujeol P. Effect of heavy metals on, and handling by, the kidney. Nephron Physiol. 2005;99(4):105–10.Google Scholar
  158. 158.
    Choudhury D, Ahmed Z. Drug-induced nephrotoxicity. Med Clin North Am. 1997;81(3):705–17.PubMedGoogle Scholar
  159. 159.
    Choudhury D, Ahmed Z. Drug-associated renal dysfunction and injury. Nat Clin Pract Nephrol. 2006;2(2):80–91.PubMedGoogle Scholar
  160. 160.
    Lande MB, Kim MS, Bartlett C, Guay-Woodford LM. Reversible Fanconi syndrome associated with valproate therapy. J Pediatr. 1993;123(2):320–2.PubMedGoogle Scholar
  161. 161.
    Zaki EL, Springate JE. Renal injury from valproic acid: case report and literature review. Pediatr Neurol. 2002;27(4):318–9.PubMedGoogle Scholar
  162. 162.
    Izumotani T, Ishimura E, Tsumura K, Goto K, Nishizawa Y, Morii H. An adult case of Fanconi syndrome due to a mixture of Chinese crude drugs. Nephron. 1993;65(1):137–40.PubMedGoogle Scholar
  163. 163.
    Lee S, Lee T, Lee B, Choi H, Yang M, Ihm CG, et al. Fanconi’s syndrome and subsequent progressive renal failure caused by a Chinese herb containing aristolochic acid. Nephrology (Carlton). 2004;9(3):126–9.Google Scholar
  164. 164.
    Ghiculescu RA, Kubler PA. Aminoglycoside-associated Fanconi syndrome. Am J Kidney Dis. 2006;48(6):e89–93.PubMedGoogle Scholar
  165. 165.
    James CW, Steinhaus MC, Szabo S, Dressier RM. Tenofovir-related nephrotoxicity: case report and review of the literature. Pharmacotherapy. 2004;24(3):415–8.PubMedGoogle Scholar
  166. 166.
    Melnick JZ, Baum M, Thompson JR. Aminoglycoside-induced Fanconi’s syndrome. Am J Kidney Dis. 1994;23(1):118–22.PubMedGoogle Scholar
  167. 167.
    Quimby D, Brito MO. Fanconi syndrome associated with use of tenofovir in HIV-infected patients: a case report and review of the literature. AIDS Read. 2005;15(7):357–64.PubMedGoogle Scholar
  168. 168.
    Rossi R, Pleyer J, Schafers P, Kuhn N, Kleta R, Deufel T, et al. Development of ifosfamide-induced nephrotoxicity: prospective follow-up in 75 patients. Med Pediatr Oncol. 1999;32(3):177–82.PubMedGoogle Scholar
  169. 169.
    Skinner R. Chronic ifosfamide nephrotoxicity in children. Med Pediatr Oncol. 2003;41(3):190–7.PubMedGoogle Scholar
  170. 170.
    Skinner R, Pearson AD, Craft AW. Ifosfamide nephrotoxicity in children. Med Pediatr Oncol. 1994;22(2):153–4.PubMedGoogle Scholar
  171. 171.
    Tsimihodimos V, Psychogios N, Kakaidi V, Bairaktari E, Elisaf M. Salicylate-induced proximal tubular dysfunction. Am J Kidney Dis. 2007;50(3):463–7.PubMedGoogle Scholar
  172. 172.
    Hall AM, Bass P, Unwin RJ. Drug-induced renal Fanconi syndrome. QJM. 2014;107(4):261–9.PubMedGoogle Scholar
  173. 173.
    Pessler F, Emery H, Dai L, Wu YM, Monash B, Cron RQ, et al. The spectrum of renal tubular acidosis in paediatric Sjogren syndrome. Rheumatology (Oxford). 2006;45(1):85–91.Google Scholar
  174. 174.
    Decourt C, Bridoux F, Touchard G, Cogne M. A monoclonal V kappa l light chain responsible for incomplete proximal tubulopathy. Am J Kidney Dis. 2003;41(2):497–504.PubMedGoogle Scholar
  175. 175.
    Lacy MQ, Gertz MA. Acquired Fanconi’s syndrome associated with monoclonal gammopathies. Hematol Oncol Clin North Am. 1999;13(6):1273–80.PubMedGoogle Scholar
  176. 176.
    Messiaen T, Deret S, Mougenot B, Bridoux F, Dequiedt P, Dion JJ, et al. Adult Fanconi syndrome secondary to light chain gammopathy. Clinicopathologic heterogeneity and unusual features in 11 patients. Medicine. 2000;79(3):135–54.PubMedGoogle Scholar
  177. 177.
    Guignard JP, Torrado A. Proximal renal tubular acidosis in vitamin D deficiency rickets. Acta Paediatr Scand. 1973;62(5):543–6.PubMedGoogle Scholar
  178. 178.
    Vainsel M, Manderlier T, Vis HL. Proximal renal tubular acidosis in vitamin D deficiency rickets. Biomedicine. 1975;22(1):35–40.PubMedGoogle Scholar
  179. 179.
    Firmin CJ, Kruger TF, Davids R. Proximal renal tubular acidosis in pregnancy. A case report and literature review. Gynecol Obstet Invest. 2007;63(1):39–44.PubMedGoogle Scholar
  180. 180.
    Riley AL, Ryan LM, Roth DA. Renal proximal tubular dysfunction and paroxysmal nocturnal hemoglobinuria. Am J Med. 1977;62(1):125–9.PubMedGoogle Scholar
  181. 181.
    Brodwall EK, Westlie L, Myhre E. The renal excretion and tubular reabsorption of citric acid in renal tubular acidosis. Acta Med Scand. 1972;192(1–2):137–9.PubMedGoogle Scholar
  182. 182.
    Simpson DP. Citrate excretion: a window on renal metabolism. Am J Physiol. 1983;244(3):F223–34.PubMedGoogle Scholar
  183. 183.
    Serrano A, Batlle D. Images in clinical medicine. Bilateral kidney calcifications. N Engl J Med. 2008;359(1):e1.PubMedGoogle Scholar
  184. 184.
    Feest TG, Proctor S, Brown R, Wrong OM. Nephrocalcinosis: another cause of renal erythrocytosis. Br Med J. 1978;2(6137):605.PubMedCentralPubMedGoogle Scholar
  185. 185.
    Feest TG, Wrong O. Erythrocytosis and nephrocalcinosis. Nephrol Dial Transplant. 1992;7(10):1071.PubMedGoogle Scholar
  186. 186.
    Simon EE, Merli C, Herndon J, Cragoe Jr EJ, Hamm LL. Effects of barium and 5-(N-ethyl-N-isopropyl)-amiloride on proximal tubule ammonia transport. Am J Physiol. 1992;262(1 Pt 2):F36–9.PubMedGoogle Scholar
  187. 187.
    Good DW. Ammonium transport by the thick ascending limb of Henle’s loop. Annu Rev Physiol. 1994;56:623–47.PubMedGoogle Scholar
  188. 188.
    Westhoff CM, Ferreri-Jacobia M, Mak DO, Foskett JK. Identification of the erythrocyte Rh blood group glycoprotein as a mammalian ammonium transporter. J Biol Chem. 2002;277(15):12499–502.PubMedGoogle Scholar
  189. 189.
    Weiner ID, Hamm LL. Molecular mechanisms of renal ammonia transport. Annu Rev Physiol. 2007;69:317–40.PubMedGoogle Scholar
  190. 190.
    Wagner CA, Devuyst O, Bourgeois S, Mohebbi N. Regulated acid–base transport in the collecting duct. Pflugers Arch. 2009;458(1):137–56.PubMedGoogle Scholar
  191. 191.
    Kamel KS, Briceno LF, Sanchez MI, Brenes L, Yorgin P, Kooh SW, et al. A new classification for renal defects in net acid excretion. Am J Kidney Dis. 1997;29(1):136–46.PubMedGoogle Scholar
  192. 192.
    Miller SG, Schwartz GJ. Hyperammonaemia with distal renal tubular acidosis. Arch Dis Child. 1997;77(5):441–4.PubMedCentralPubMedGoogle Scholar
  193. 193.
    Pela I, Seracini D. Hyperammonemia in distal renal tubular acidosis: is it more common than we think? Clin Nephrol. 2007;68(2):109–14.PubMedGoogle Scholar
  194. 194.
    Seracini D, Poggi GM, Pela I. Hyperammonaemia in a child with distal renal tubular acidosis. Pediatr Nephrol. 2005;20(11):1645–7.PubMedGoogle Scholar
  195. 195.
    Miura K, Sekine T, Takahashi K, Takita J, Harita Y, Ohki K, et al. Mutational analyses of the ATP6V1B1 and ATP6V0A4 genes in patients with primary distal renal tubular acidosis. Nephrol Dial Transplant. 2013;28(8):2123–30.PubMedGoogle Scholar
  196. 196.
    Batlle D, Moorthi KM, Schlueter W, Kurtzman N. Distal renal tubular acidosis and the potassium enigma. Semin Nephrol. 2006;26(6):471–8.PubMedGoogle Scholar
  197. 197.
    Sebastian A, McSherry E, Morris Jr RC. Renal potassium wasting in renal tubular acidosis (RTA): its occurrence in types 1 and 2 RTA despite sustained correction of systemic acidosis. J Clin Invest. 1971;50(3):667–78.PubMedCentralPubMedGoogle Scholar
  198. 198.
    Muto S, Asano Y, Okazaki H, Kano S. Renal potassium wasting in distal renal tubular acidosis: role of aldosterone. Intern Med. 1992;31(8):1047–51.PubMedGoogle Scholar
  199. 199.
    Bresolin NL, Grillo E, Fernandes VR, Carvalho FL, Goes JE, da Silva RJ. A case report and review of hypokalemic paralysis secondary to renal tubular acidosis. Pediatr Nephrol. 2005;20(6):818–20.PubMedGoogle Scholar
  200. 200.
    Siamopoulos KC, Elisaf M, Drosos AA, Mavridis AA, Moutsopoulos HM. Renal tubular acidosis in primary Sjogren’s syndrome. Clin Rheumatol. 1992;11(2):226–30.PubMedGoogle Scholar
  201. 201.
    Siamopoulos KC, Elisaf M, Moutsopoulos HM. Hypokalaemic paralysis as the presenting manifestation of primary Sjogren’s syndrome. Nephrol Dial Transplant. 1994;9(8):1176–8.PubMedGoogle Scholar
  202. 202.
    von Vigier RO, Ortisi MT, La Manna A, Bianchetti MG, Bettinelli A. Hypokalemic rhabdomyolysis in congenital tubular disorders: a case series and a systematic review. Pediatr Nephrol. 2010;25(5):861–6.Google Scholar
  203. 203.
    Gallagher PG. Red cell membrane disorders. Hematol Am Soc Hematol Educ Progr. 2005;2005:13–8.Google Scholar
  204. 204.
    Tanner MJ. The structure and function of band 3 (AE1): recent developments (review). Mol Membr Biol. 1997;14(4):155–65.PubMedGoogle Scholar
  205. 205.
    Bruce LJ, Beckmann R, Ribeiro ML, Peters LL, Chasis JA, Delaunay J, et al. A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane. Blood. 2003;101(10):4180–8.Google Scholar
  206. 206.
    Bruce LJ. Red cell membrane transport abnormalities. Curr Opin Hematol. 2008;15(3):184–90.Google Scholar
  207. 207.
    Guizouarn H, Martial S, Gabillat N, Borgese F. Point mutations involved in red cell stomatocytosis convert the electroneutral anion exchanger 1 to a nonselective cation conductance. Blood. 2007;110(6):2158–65.PubMedGoogle Scholar
  208. 208.
    Bruce LJ, Ring SM, Ridgwell K, Reardon DM, Seymour CA, Van Dort HM, et al. South-East Asian ovalocytic (SAO) erythrocytes have a cold sensitive cation leak: implications for in vitro studies on stored SAO red cells. Biochim Biophys Acta. 1999;1416(1–2):258–70.PubMedGoogle Scholar
  209. 209.
    Bruce LJ, Cope DL, Jones GK, Schofield AE, Burley M, Povey S, et al. Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J Clin Invest. 1997;100(7):1693–707.PubMedCentralPubMedGoogle Scholar
  210. 210.
    Karet FE, Gainza FJ, Gyory AZ, Unwin RJ, Wrong O, Tanner MJ, et al. Mutations in the chloride-bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis. Proc Natl Acad Sci USA. 1998;95(11):6337–42.PubMedCentralPubMedGoogle Scholar
  211. 211.
    Khositseth S, Sirikanaerat A, Khoprasert S, Opastirakul S, Kingwatanakul P, Thongnoppakhun W, et al. Hematological abnormalities in patients with distal renal tubular acidosis and hemoglobinopathies. Am J Hematol. 2008;83(6):465–71.PubMedGoogle Scholar
  212. 212.
    Wrong O, Bruce LJ, Unwin RJ, Toye AM, Tanner MJ. Band 3 mutations, distal renal tubular acidosis, and Southeast Asian ovalocytosis. Kidney Int. 2002;62(1):10–9.PubMedGoogle Scholar
  213. 213.
    Yenchitsomanus PT. Human anion exchanger1 mutations and distal renal tubular acidosis. Southeast Asian J Trop Med Public Health. 2003;34(3):651–8.PubMedGoogle Scholar
  214. 214.
    Yenchitsomanus PT, Sawasdee N, Paemanee A, Keskanokwong T, Vasuvattakul S, Bejrachandra S, et al. Anion exchanger 1 mutations associated with distal renal tubular acidosis in the Thai population. J Hum Genet. 2003;48(9):451–6.PubMedGoogle Scholar
  215. 215.
    Khositseth S, Bruce LJ, Walsh SB, Bawazir WM, Ogle GD, Unwin RJ, et al. Tropical distal renal tubular acidosis: clinical and epidemiological studies in 78 patients. QJM. 2012;105(9):861–77.PubMedGoogle Scholar
  216. 216.
    Fry AC, Karet FE. Inherited renal acidoses. Physiology (Bethesda). 2007;22:202–11.Google Scholar
  217. 217.
    Karet FE. Inherited distal renal tubular acidosis. J Am Soc Nephrol. 2002;13(8):2178–84.PubMedGoogle Scholar
  218. 218.
    Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H, Sanjad SA, et al. Mutations in the gene encoding B1 subunit of H+−ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet. 1999;21(1):84–90.PubMedGoogle Scholar
  219. 219.
    Lang F, Vallon V, Knipper M, Wangemann P. Functional significance of channels and transporters expressed in the inner ear and kidney. Am J Physiol Cell Physiol. 2007;293(4):C1187–208.PubMedGoogle Scholar
  220. 220.
    Peters TA, Monnens LA, Cremers CW, Curfs JH. Genetic disorders of transporters/channels in the inner ear and their relation to the kidney. Pediatr Nephrol. 2004;19(11):1194–201.PubMedGoogle Scholar
  221. 221.
    Gil H, Santos F, Garcia E, Alvarez MV, Ordonez FA, Malaga S, et al. Distal RTA with nerve deafness: clinical spectrum and mutational analysis in five children. Pediatr Nephrol. 2007;22(6):825–8.PubMedGoogle Scholar
  222. 222.
    Stover EH, Borthwick KJ, Bavalia C, Eady N, Fritz DM, Rungroj N, et al. Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet. 2002;39(11):796–803.PubMedCentralPubMedGoogle Scholar
  223. 223.
    Bajaj G, Quan A. Renal tubular acidosis and deafness: report of a large family. Am J Kidney Dis. 1996;27(6):880–2.PubMedGoogle Scholar
  224. 224.
    Fuster DG, Zhang J, Xie XS, Moe OW. The vacuolar-ATPase B1 subunit in distal tubular acidosis: novel mutations and mechanisms for dysfunction. Kidney Int. 2008;73(10):1151–8.PubMedGoogle Scholar
  225. 225.
    Smith AN, Skaug J, Choate KA, Nayir A, Bakkaloglu A, Ozen S, et al. Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat Genet. 2000;26(1):71–5.PubMedGoogle Scholar
  226. 226.
    Li SL, Liou LB, Fang JT, Tsai WP. Symptomatic renal tubular acidosis (RTA) in patients with systemic lupus erythematosus: an analysis of six cases with new association of type 4 RTA. Rheumatology (Oxford). 2005;44(9):1176–80.Google Scholar
  227. 227.
    Lorente-Canovas B, Ingham N, Norgett EE, Golder ZJ, Karet Frankl FE, Steel KP. Mice deficient in H+−ATPase a4 subunit have severe hearing impairment associated with enlarged endolymphatic compartments within the inner ear. Dis Model Mech. 2013;6(2):434–42.PubMedCentralPubMedGoogle Scholar
  228. 228.
    Norgett EE, Golder ZJ, Lorente-Canovas B, Ingham N, Steel KP, Karet Frankl FE. Atp6v0a4 knockout mouse is a model of distal renal tubular acidosis with hearing loss, with additional extrarenal phenotype. Proc Natl Acad Sci USA. 2012;109(34):13775–80.PubMedCentralPubMedGoogle Scholar
  229. 229.
    Fabris A, Anglani F, Lupo A, Gambaro G. Medullary sponge kidney: state of the art. Nephrol Dial Transplant. 2013;28(5):1111–9.PubMedGoogle Scholar
  230. 230.
    Carboni I, Andreucci E, Caruso MR, Ciccone R, Zuffardi O, Genuardi M, et al. Medullary sponge kidney associated with primary distal renal tubular acidosis and mutations of the H+−ATPase genes. Nephrol Dial Transplant. 2009;24(9):2734–8.PubMedGoogle Scholar
  231. 231.
    Stehberger PA, Shmukler BE, Stuart-Tilley AK, Peters LL, Alper SL, Wagner CA. Distal renal tubular acidosis in mice lacking the AE1 (band3) Cl/HCO3 exchanger (slc4a1). J Am Soc Nephrol. 2007;18(5):1408–18.PubMedGoogle Scholar
  232. 232.
    Blomqvist SR, Vidarsson H, Fitzgerald S, Johansson BR, Ollerstam A, Brown R, et al. Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1. J Clin Invest. 2004;113(11):1560–70.PubMedCentralPubMedGoogle Scholar
  233. 233.
    Cohen EP, Bastani B, Cohen MR, Kolner S, Hemken P, Gluck SL. Absence of H(+)-ATPase in cortical collecting tubules of a patient with Sjogren’s syndrome and distal renal tubular acidosis. J Am Soc Nephrol. 1992;3(2):264–71.PubMedGoogle Scholar
  234. 234.
    Pertovaara M, Korpela M, Kouri T, Pasternack A. The occurrence of renal involvement in primary Sjogren’s syndrome: a study of 78 patients. Rheumatology (Oxford). 1999;38(11):1113–20.Google Scholar
  235. 235.
    Bagga A, Jain Y, Srivastava RN, Bhuyan UN. Renal tubular acidosis preceding systemic lupus erythematosus. Pediatr Nephrol. 1993;7(6):735–6.PubMedGoogle Scholar
  236. 236.
    Caruana RJ, Barish CF, Buckalew Jr VM. Complete distal renal tubular acidosis in systemic lupus: clinical and laboratory findings. Am J Kidney Dis. 1985;6(1):59–63.PubMedGoogle Scholar
  237. 237.
    Konishi K, Hayashi M, Saruta T. Renal tubular acidosis with autoantibody directed to renal collecting-duct cells. N Engl J Med. 1994;331(23):1593–4.PubMedGoogle Scholar
  238. 238.
    Schwarz C, Benesch T, Kodras K, Oberbauer R, Haas M. Complete renal tubular acidosis late after kidney transplantation. Nephrol Dial Transplant. 2006;21(9):2615–20.PubMedGoogle Scholar
  239. 239.
    McCurdy DK, Frederic M, Elkinton JR. Renal tubular acidosis due to amphotericin B. N Engl J Med. 1968;278(3):124–30.PubMedGoogle Scholar
  240. 240.
    Roscoe JM, Goldstein MB, Halperin ML, Schloeder FX, Stinebaugh BJ. Effect of amphotercin B on urine acidification in rats: implications for the pathogenesis of distal renal tubular acidosis. J Lab Clin Med. 1977;89(3):463–70.PubMedGoogle Scholar
  241. 241.
    Stinebaugh BJ, Schloeder FX, Tam SC, Goldstein MB, Halperin ML. Pathogenesis of distal renal tubular acidosis. Kidney Int. 1981;19(1):1–7.PubMedGoogle Scholar
  242. 242.
    Hoorn EJ, Zietse R. Combined renal tubular acidosis and diabetes insipidus in hematological disease. Nat Clin Pract Nephrol. 2007;3(3):171–5.PubMedGoogle Scholar
  243. 243.
    Navarro JF, Quereda C, Gallego N, Antela A, Mora C, Ortuno J. Nephrogenic diabetes insipidus and renal tubular acidosis secondary to foscarnet therapy. Am J Kidney Dis. 1996;27(3):431–4.PubMedGoogle Scholar
  244. 244.
    Roscoe JM, Goldstein MB, Halperin ML, Wilson DR, Stinebaugh BJ. Lithium-induced impairment of urine acidification. Kidney Int. 1976;9(4):344–50.PubMedGoogle Scholar
  245. 245.
    Seikaly M, Browne R, Baum M. Nephrocalcinosis is associated with renal tubular acidosis in children with X-linked hypophosphatemia. Pediatrics. 1996;97(1):91–3.PubMedGoogle Scholar
  246. 246.
    Bonilla-Felix M, Villegas-Medina O, Vehaskari VM. Renal acidification in children with idiopathic hypercalciuria. J Pediatr. 1994;124(4):529–34.PubMedGoogle Scholar
  247. 247.
    Nilwarangkur S, Nimmannit S, Chaovakul V, Susaengrat W, Ong-aj-Yooth S, Vasuvattakul S, et al. Endemic primary distal renal tubular acidosis in Thailand. Q J Med. 1990;74(275):289–301.PubMedGoogle Scholar
  248. 248.
    Dafnis E, Spohn M, Lonis B, Kurtzman NA, Sabatini S. Vanadate causes hypokalemic distal renal tubular acidosis. Am J Physiol. 1992;262(3 Pt 2):F449–53.PubMedGoogle Scholar
  249. 249.
    Carlisle EJ, Donnelly SM, Vasuvattakul S, Kamel KS, Tobe S, Halperin ML. Glue-sniffing and distal renal tubular acidosis: sticking to the facts. J Am Soc Nephrol. 1991;1(8):1019–27.PubMedGoogle Scholar
  250. 250.
    Vainsel M, Fondu P, Cadranel S, Rocmans C, Gepts W. Osteopetrosis associated with proximal and distal tubular acidosis. Acta Paediatr Scand. 1972;61(4):429–34.PubMedGoogle Scholar
  251. 251.
    Borthwick KJ, Kandemir N, Topaloglu R, Kornak U, Bakkaloglu A, Yordam N, et al. A phenocopy of CAII deficiency: a novel genetic explanation for inherited infantile osteopetrosis with distal renal tubular acidosis. J Med Genet. 2003;40(2):115–21.PubMedCentralPubMedGoogle Scholar
  252. 252.
    Nagai R, Kooh SW, Balfe JW, Fenton T, Halperin ML. Renal tubular acidosis and osteopetrosis with carbonic anhydrase II deficiency: pathogenesis of impaired acidification. Pediatr Nephrol. 1997;11(5):633–6.PubMedGoogle Scholar
  253. 253.
    Del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone. 2008;42(1):19–29.PubMedGoogle Scholar
  254. 254.
    Karet FE. Mechanisms in hyperkalemic renal tubular acidosis. J Am Soc Nephrol. 2009;20(2):251–4.PubMedGoogle Scholar
  255. 255.
    Wagner CA, Geibel JP. Acid–base transport in the collecting duct. J Nephrol. 2002;15 Suppl 5:S112–27.PubMedGoogle Scholar
  256. 256.
    Sartorius OW, Calhoon D, Pitts RF. The capacity of the adrenalectomized rat to secrete hydrogen and ammonium ions. Endocrinology. 1952;51(5):444–50.PubMedGoogle Scholar
  257. 257.
    Sartorius OW, Calhoon D, Pitts RF. Studies on the interrelationships of the adrenal cortex and renal ammonia excretion by the rat. Endocrinology. 1953;52(3):256–65.PubMedGoogle Scholar
  258. 258.
    Welbourne TC, Francoeur D. Influence of aldosterone on renal ammonia production. Am J Physiol. 1977;233(1):E56–60.PubMedGoogle Scholar
  259. 259.
    DuBose Jr TD. Hyperkalemic hyperchloremic metabolic acidosis: pathophysiologic insights. Kidney Int. 1997;51(2):591–602.PubMedGoogle Scholar
  260. 260.
    DuBose Jr TD. Molecular and pathophysiologic mechanisms of hyperkalemic metabolic acidosis. Trans Am Clin Climatol Assoc. 2000;111:122–33; discussion 33–4.PubMedCentralPubMedGoogle Scholar
  261. 261.
    White PC, New MI, Dupont B. Congenital adrenal hyperplasia (2). N Engl J Med. 1987;316(25):1580–6.PubMedGoogle Scholar
  262. 262.
    White PC, New MI, Dupont B. Congenital adrenal hyperplasia. (1). N Engl J Med. 1987;316(24):1519–24.PubMedGoogle Scholar
  263. 263.
    White PC. Steroid 11 beta-hydroxylase deficiency and related disorders. Endocrinol Metab Clin North Am. 2001;30(1):61–79, vi.PubMedGoogle Scholar
  264. 264.
    Geller DS, Rodriguez-Soriano J, Vallo Boado A, Schifter S, Bayer M, Chang SS, et al. Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nat Genet. 1998;19(3):279–81.PubMedGoogle Scholar
  265. 265.
    Chang SS, Grunder S, Hanukoglu A, Rosler A, Mathew PM, Hanukoglu I, et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet. 1996;12(3):248–53.PubMedGoogle Scholar
  266. 266.
    Gordon RD. Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate. Hypertension. 1986;8(2):93–102.PubMedGoogle Scholar
  267. 267.
    Schambelan M, Sebastian A, Rector Jr FC. Mineralocorticoid-resistant renal hyperkalemia without salt wasting (type II pseudohypoaldosteronism): role of increased renal chloride reabsorption. Kidney Int. 1981;19(5):716–27.PubMedGoogle Scholar
  268. 268.
    Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, et al. Human hypertension caused by mutations in WNK kinases. Science. 2001;293(5532):1107–12.PubMedGoogle Scholar
  269. 269.
    Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, et al. Mutations in Kelch-like 3 and Cullin 3 cause hypertension and electrolyte abnormalities. Nature. 2012;482(7383):98–102.PubMedCentralPubMedGoogle Scholar
  270. 270.
    Louis-Dit-Picard H, Barc J, Trujillano D, Miserey-Lenkei S, Bouatia-Naji N, Pylypenko O, et al. KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet. 2012;44(4):456–60, S1-3.PubMedGoogle Scholar
  271. 271.
    Shibata S, Zhang J, Puthumana J, Stone KL, Lifton RP. Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4. Proc Natl Acad Sci USA. 2013;110(19):7838–43.PubMedCentralPubMedGoogle Scholar
  272. 272.
    Tsuji S, Yamashita M, Unishi G, Takewa R, Kimata T, Isobe K, et al. A young child with pseudohypoaldosteronism type II by a mutation of Cullin 3. BMC Nephrol. 2013;14:166.PubMedCentralPubMedGoogle Scholar
  273. 273.
    Knochel JP. The syndrome of hyporeninemic hypoaldosteronism. Annu Rev Med. 1979;30:145–53.PubMedGoogle Scholar
  274. 274.
    Sebastian A, Schambelan M, Lindenfeld S, Morris Jr RC. Amelioration of metabolic acidosis with fludrocortisone therapy in hyporeninemic hypoaldosteronism. N Engl J Med. 1977;297(11):576–83.PubMedGoogle Scholar
  275. 275.
    Kristjansson K, Laxdal T, Ragnarsson J. Type 4 renal tubular acidosis (sub-type 2) associated with idiopathic interstitial nephritis. Acta Paediatr Scand. 1986;75(6):1051–4.PubMedGoogle Scholar
  276. 276.
    Keven K, Ozturk R, Sengul S, Kutlay S, Ergun I, Erturk S, et al. Renal tubular acidosis after kidney transplantation–incidence, risk factors and clinical implications. Nephrol Dial Transplant. 2007;22(3):906–10.PubMedGoogle Scholar
  277. 277.
    Olyaei AJ, de Mattos AM, Bennett WM. Immunosuppressant-induced nephropathy: pathophysiology, incidence and management. Drug Saf. 1999;21(6):471–88.PubMedGoogle Scholar
  278. 278.
    Bagga A, Bajpai A, Menon S. Approach to renal tubular disorders. Indian J Pediatr. 2005;72(9):771–6.PubMedGoogle Scholar
  279. 279.
    Bagga A, Sinha A. Evaluation of renal tubular acidosis. Indian J Pediatr. 2007;74(7):679–86.PubMedGoogle Scholar
  280. 280.
    Soriano RJ. Renal tubular acidosis: the clinical entity. J Am Soc Nephrol. 2002;13(8):2160–70.Google Scholar
  281. 281.
    Rodriguez-Soriano J, Vallo A. Renal tubular acidosis. Pediatr Nephrol. 1990;4(3):268–75.PubMedGoogle Scholar
  282. 282.
    Adedoyin O, Gottlieb B, Frank R, Vento S, Vergara M, Gauthier B, et al. Evaluation of failure to thrive: diagnostic yield of testing for renal tubular acidosis. Pediatrics. 2003;112(6 Pt 1):e463.PubMedGoogle Scholar
  283. 283.
    Emmett M, Narins RG. Clinical use of the anion gap. Medicine. 1977;56(1):38–54.PubMedGoogle Scholar
  284. 284.
    Kraut JA, Madias NE. Serum anion gap: its uses and limitations in clinical medicine. Clin J Am Soc Nephrol. 2007;2(1):162–74.PubMedGoogle Scholar
  285. 285.
    Kraut JA, Madias NE. Differential diagnosis of nongap metabolic acidosis: value of a systematic approach. Clin J Am Soc Nephrol. 2012;7(4):671–9.PubMedCentralPubMedGoogle Scholar
  286. 286.
    Oh MS, Carroll HJ. The anion gap. N Engl J Med. 1977;297(15):814–7.PubMedGoogle Scholar
  287. 287.
    Kraut JA, Madias NE. Approach to patients with acid–base disorders. Respir Care. 2001;46(4):392–403.PubMedGoogle Scholar
  288. 288.
    Batlle DC, Hizon M, Cohen E, Gutterman C, Gupta R. The use of the urinary anion gap in the diagnosis of hyperchloremic metabolic acidosis. N Engl J Med. 1988;318(10):594–9.PubMedGoogle Scholar
  289. 289.
    Dyck RF, Asthana S, Kalra J, West ML, Massey KL. A modification of the urine osmolal gap: an improved method for estimating urine ammonium. Am J Nephrol. 1990;10(5):359–62.PubMedGoogle Scholar
  290. 290.
    Goldstein MB, Bear R, Richardson RM, Marsden PA, Halperin ML. The urine anion gap: a clinically useful index of ammonium excretion. Am J Med Sci. 1986;292(4):198–202.PubMedGoogle Scholar
  291. 291.
    Halperin ML, Margolis BL, Robinson LA, Halperin RM, West ML, Bear RA. The urine osmolal gap: a clue to estimate urine ammonium in “hybrid” types of metabolic acidosis. Clin Invest Med. 1988;11(3):198–202.PubMedGoogle Scholar
  292. 292.
    Kim GH, Han JS, Kim YS, Joo KW, Kim S, Lee JS. Evaluation of urine acidification by urine anion gap and urine osmolal gap in chronic metabolic acidosis. Am J Kidney Dis. 1996;27(1):42–7.PubMedGoogle Scholar
  293. 293.
    Richardson RM, Halperin ML. The urine pH: a potentially misleading diagnostic test in patients with hyperchloremic metabolic acidosis. Am J Kidney Dis. 1987;10(2):140–3.PubMedGoogle Scholar
  294. 294.
    Kirschbaum B, Sica D, Anderson FP. Urine electrolytes and the urine anion and osmolar gaps. J Lab Clin Med. 1999;133(6):597–604.PubMedGoogle Scholar
  295. 295.
    Sulyok E, Guignard JP. Relationship of urinary anion gap to urinary ammonium excretion in the neonate. Biol Neonate. 1990;57(2):98–106.PubMedGoogle Scholar
  296. 296.
    DuBose Jr TD, Caflisch CR. Validation of the difference in urine and blood carbon dioxide tension during bicarbonate loading as an index of distal nephron acidification in experimental models of distal renal tubular acidosis. J Clin Invest. 1985;75(4):1116–23.PubMedCentralPubMedGoogle Scholar
  297. 297.
    Kim S, Lee JW, Park J, Na KY, Joo KW, Ahn C, et al. The urine-blood PCO gradient as a diagnostic index of H(+)-ATPase defect distal renal tubular acidosis. Kidney Int. 2004;66(2):761–7.PubMedGoogle Scholar
  298. 298.
    Lin JY, Lin JS, Tsai CH. Use of the urine-to-blood carbon dioxide tension gradient as a measurement of impaired distal tubular hydrogen ion secretion among neonates. J Pediatr. 1995;126(1):114–7.PubMedGoogle Scholar
  299. 299.
    Walsh SB, Shirley DG, Wrong OM, Unwin RJ. Urinary acidification assessed by simultaneous furosemide and fludrocortisone treatment: an alternative to ammonium chloride. Kidney Int. 2007;71(12):1310–6.PubMedGoogle Scholar
  300. 300.
    Kleta R, Bernardini I, Ueda M, Varade WS, Phornphutkul C, Krasnewich D, et al. Long-term follow-up of well-treated nephropathic cystinosis patients. J Pediatr. 2004;145(4):555–60.PubMedGoogle Scholar
  301. 301.
    Kleta R, Gahl WA. Pharmacological treatment of nephropathic cystinosis with cysteamine. Expert Opin Pharmacother. 2004;5(11):2255–62.PubMedGoogle Scholar
  302. 302.
    Kleta R, Kaskel F, Dohil R, Goodyer P, Guay-Woodford LM, Harms E, et al. First NIH/office of rare diseases conference on cystinosis: past, present, and future. Pediatr Nephrol. 2005;20(4):452–4.PubMedGoogle Scholar
  303. 303.
    Schneider JA. Treatment of cystinosis: simple in principle, difficult in practice. J Pediatr. 2004;145(4):436–8.PubMedGoogle Scholar
  304. 304.
    Domrongkitchaiporn S, Khositseth S, Stitchantrakul W, Tapaneya-olarn W, Radinahamed P. Dosage of potassium citrate in the correction of urinary abnormalities in pediatric distal renal tubular acidosis patients. Am J Kidney Dis. 2002;39(2):383–91.PubMedGoogle Scholar
  305. 305.
    Tapaneya-Olarn W, Khositseth S, Tapaneya-Olarn C, Teerakarnjana N, Chaichanajarernkul U, Stitchantrakul W, et al. The optimal dose of potassium citrate in the treatment of children with distal renal tubular acidosis. J Med Assoc Thai. 2002;85 Suppl 4:S1143–9.PubMedGoogle Scholar
  306. 306.
    Morris Jr RC, Sebastian A. Alkali therapy in renal tubular acidosis: who needs it? J Am Soc Nephrol. 2002;13(8):2186–8.PubMedGoogle Scholar
  307. 307.
    Kennedy Jr TJ, Orloff J, Berliner RW. Significance of carbon dioxide tension in urine. Am J Physiol. 1952;169(3):596–608.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PediatricsUniversity of Texas Southwestern Medical Center at DallasDallasUSA

Personalised recommendations