Translational Research Methods: Basics of Renal Molecular Biology

  • Gian Marco Ghiggeri
  • Maurizio Bruschi
  • Simone Sanna-Cherchi
Living reference work entry

Abstract

Molecular biology has developed between years 1940s and 1960s as a branch of science that spans from genetics to cell biology and biochemistry with the goal of understanding the interactions by which DNA, RNA, and protein synthesis operate into cells [1]. Since then, numerous technological innovations pushed the field forward, allowing recombinant DNA technology to be applied to a wide variety of biologic problems and to enter the clinical practice. The discovery of restriction nucleases and DNA ligases, development of DNA libraries, DNA cloning procedures, nucleic acid hybridization techniques, and the polymerase chain reaction (PCR) together with transgenic animals have all represented successive steps for a successful delineation of the role of genes in cellular physiology and pathophysiology. This molecular revolution has affected all of the sciences, including medical and clinical research, and has culminated in the completion of the human genome project [2, 3]. In the past 15 years, we have witnessed tremendous technological advances for high-throughput analysis of DNA, RNA, and protein in a comprehensive and cost-effective manner, with great promises to translate the analysis of the central dogma of biology into precision diagnosis and treatment for both rare and common diseases (Fig. 1). The recent advances in RNA biology identified numerous noncoding functional regions of the genome, which “escape” the central dogma but that can be analyzed and studied using a similar framework.

Keywords

Next Generation Sequencing Array Comparative Genomic Hybridization Single Nucleotide Polymorphism Array Single Nucleotide Polymorphism Chip Rare CNVs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Astbury WT. Molecular biology or ultrastructural biology? Nature. 1961;190:1124.PubMedGoogle Scholar
  2. 2.
    Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.PubMedGoogle Scholar
  3. 3.
    Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291:1304–51.PubMedGoogle Scholar
  4. 4.
    Lander ES, Botstein D. Mapping complex genetic traits in humans: new methods using a complete RFLP linkage map. Cold Spring Harb Symp Quant Biol. 1986;51:49–62.PubMedGoogle Scholar
  5. 5.
    Lander ES, Schork NJ. Genetic dissection of complex traits. Science. 1994;265:2037–48.PubMedGoogle Scholar
  6. 6.
    Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74:5463–7.PubMedCentralPubMedGoogle Scholar
  7. 7.
    International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931–45.Google Scholar
  8. 8.
    Ng SB, Turner EH, Robertson PD, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461:272–6.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Choi M, Scholl UI, Ji W, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106:19096–101.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Lemaire M, Fremeaux-Bacchi V, Schaefer F, et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013;45:531–6.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Ng SB, Bigham AW, Buckingham KJ, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010;42:790–3.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Ng SB, Buckingham KJ, Lee C, et al. Exome sequencing identifies the cause of a Mendelian disorder. Nat Genet. 2010;42:30–5.PubMedCentralPubMedGoogle Scholar
  13. 13.
    O’Roak BJ, Vives L, Girirajan S, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485:246–50.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Sanna-Cherchi S, Burgess KE, Nees SN, et al. Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome. Kidney Int. 2011;80:389–96.PubMedGoogle Scholar
  15. 15.
    Sanna-Cherchi S, Sampogna RV, Papeta N, et al. Mutations in DSTYK and dominant urinary tract malformations. N Engl J Med. 2013;369:621.PubMedGoogle Scholar
  16. 16.
    Westland R, Bodria M, Carrea A, et al. Phenotypic expansion of DGKE-associated diseases. J Am Soc Nephrol. 2014;25:1408.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Boyden LM, Choi M, Choate KA, et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature. 2012;482:98–102.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Romberg N, Al Moussawi K, Nelson-Williams C, et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet. 2014;46:1135–9.PubMedCentralPubMedGoogle Scholar
  19. 19.
    TG, HDL Working Group of the Exome Sequencing Project NHL, Blood Institute, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371:22–31.Google Scholar
  20. 20.
    Chaki M, Airik R, Ghosh AK, et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell. 2012;150:533–48.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Keramati AR, Fathzadeh M, Go GW, et al. A form of the metabolic syndrome associated with mutations in DYRK1B. N Engl J Med. 2014;370:1909–19.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet. 2010;11:31–46.PubMedGoogle Scholar
  23. 23.
    O’Roak BJ, Vives L, Fu W, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012;338:1619–22.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Halbritter J, Diaz K, Chaki M, et al. High-throughput mutation analysis in patients with a nephronophthisis-associated ciliopathy applying multiplexed barcoded array-based PCR amplification and next-generation sequencing. J Med Genet. 2012;49:756–67.PubMedGoogle Scholar
  25. 25.
    Halbritter J, Porath JD, Diaz KA, et al. Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy. Hum Genet. 2013;132:865–84.PubMedGoogle Scholar
  26. 26.
    International HapMap Consortium. The International HapMap Project. Nature. 2003;426:789–96.Google Scholar
  27. 27.
    Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273:1516–7.PubMedGoogle Scholar
  28. 28.
    Haines JL, Hauser MA, Schmidt S, et al. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005;308:419–21.PubMedGoogle Scholar
  29. 29.
    Edwards AO, Ritter 3rd R, Abel KJ, Manning A, Panhuysen C, Farrer LA. Complement factor H polymorphism and age-related macular degeneration. Science. 2005;308:421–4.PubMedGoogle Scholar
  30. 30.
    Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308:385–9.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Palotie A, Widen E, Ripatti S. From genetic discovery to future personalized health research. N Biotechnol. 2013;30:291–5.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Weiss KM, Terwilliger JD. How many diseases does it take to map a gene with SNPs? Nat Genet. 2000;26:151–7.PubMedGoogle Scholar
  33. 33.
    Terwilliger JD, Hiekkalinna T. An utter refutation of the “fundamental theorem of the HapMap”. Eur J Hum Genet. 2006;14:426–37.PubMedGoogle Scholar
  34. 34.
    Gharavi AG, Kiryluk K, Choi M, et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet. 2011;43:321–7.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Kiryluk K, Li Y, Scolari F, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet. 2014;46:1187–96.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Stanescu HC, Arcos-Burgos M, Medlar A, et al. Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. N Engl J Med. 2011;364:616–26.PubMedGoogle Scholar
  37. 37.
    Lupski JR. Genomic rearrangements and sporadic disease. Nat Genet. 2007;39:S43–7.PubMedGoogle Scholar
  38. 38.
    Conrad DF, Pinto D, Redon R, et al. Origins and functional impact of copy number variation in the human genome. Nature. 2010;464:704–12.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Sebat J, Lakshmi B, Troge J, et al. Large-scale copy number polymorphism in the human genome. Science. 2004;305:525–8.PubMedGoogle Scholar
  40. 40.
    Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome. Nature. 2006;444:444–54.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Iafrate AJ, Feuk L, Rivera MN, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36:949–51.PubMedGoogle Scholar
  42. 42.
    Wellcome Trust Case Control Consortium, Craddock N, Hurles ME, et al. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature. 2010;464:713–20.Google Scholar
  43. 43.
    Cooper GM, Coe BP, Girirajan S, et al. A copy number variation morbidity map of developmental delay. Nat Genet. 2011;43:838–46.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Greenway SC, Pereira AC, Lin JC, et al. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet. 2009;41:931–5.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Osoegawa K, Vessere GM, Utami KH, et al. Identification of novel candidate genes associated with cleft lip and palate using array comparative genomic hybridisation. J Med Genet. 2008;45:81–6.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Serra-Juhe C, Rodriguez-Santiago B, Cusco I, et al. Contribution of rare copy number variants to isolated human malformations. PLoS One. 2012;7:e45530.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Brunetti-Pierri N, Berg JS, Scaglia F, et al. Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat Genet. 2008;40:1466–71.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Sanders SJ, Ercan-Sencicek AG, Hus V, et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron. 2011;70:863–85.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Sebat J, Lakshmi B, Malhotra D, et al. Strong association of de novo copy number mutations with autism. Science. 2007;316:445–9.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Stefansson H, Rujescu D, Cichon S, et al. Large recurrent microdeletions associated with schizophrenia. Nature. 2008;455:232–6.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Sanna-Cherchi S, Kiryluk K, Burgess KE, et al. Copy-number disorders are a common cause of congenital kidney malformations. Am J Hum Genet. 2012;91:987–97.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Reddy UM, Page GP, Saade GR, et al. Karyotype versus microarray testing for genetic abnormalities after stillbirth. N Engl J Med. 2012;367:2185–93.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Wapner RJ, Martin CL, Levy B, et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med. 2012;367:2175–84.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Abel HJ, Duncavage EJ. Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches. Cancer Genet. 2013;206:432–40.PubMedCentralPubMedGoogle Scholar
  55. 55.
    O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250:4007–21.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Anderson L, Anderson NG. High resolution two-dimensional electrophoresis of human plasma proteins. Proc Natl Acad Sci U S A. 1977;74:5421–5.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Bruschi M, Musante L, Candiano G, et al. Soft immobilized pH gradient gels in proteome analysis: a follow-up. Proteomics. 2003;3:821–5.PubMedGoogle Scholar
  58. 58.
    Manabe T, Jin Y. Analysis of protein/polypeptide interactions in human plasma using nondenaturing micro-2-DE followed by 3-D SDS-PAGE and MS. Electrophoresis. 2007;28:2065–79.PubMedGoogle Scholar
  59. 59.
    Manabe T, Jin Y, Tani O. Assignment of human plasma polypeptides on a nondenaturing 2-D gel using MALDI-MS and PMF and comparisons with the results of intact protein mapping. Electrophoresis. 2007;28:843–63.PubMedGoogle Scholar
  60. 60.
    Candiano G, Santucci L, Petretto A, et al. High-resolution 2-DE for resolving proteins, protein adducts and complexes in plasma. Electrophoresis. 2008;29:682–94.PubMedGoogle Scholar
  61. 61.
    Panfoli I, Calzia D, Santucci L, Ravera S, Bruschi M, Candiano G. A blue dive: from ‘blue fingers’ to ‘blue silver’. A comparative overview of staining methods for in-gel proteomics. Expert Rev Proteomics. 2012;9:627–34.PubMedGoogle Scholar
  62. 62.
    Alban A, David SO, Bjorkesten L, et al. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics. 2003;3:36–44.PubMedGoogle Scholar
  63. 63.
    Bruschi M, Grilli S, Candiano G, et al. New iodo-acetamido cyanines for labeling cysteine thiol residues. A strategy for evaluating plasma proteins and their oxido-redox status. Proteomics. 2009;9:460–9.PubMedGoogle Scholar
  64. 64.
    Knowles MR, Cervino S, Skynner HA, et al. Multiplex proteomic analysis by two-dimensional differential in-gel electrophoresis. Proteomics. 2003;3:1162–71.PubMedGoogle Scholar
  65. 65.
    Rosenthal N. Molecular medicine. Recognizing DNA. N Engl J Med. 1995;333:925–7.PubMedGoogle Scholar
  66. 66.
    Ott J. Estimation of the recombination fraction in human pedigrees: efficient computation of the likelihood for human linkage studies. Am J Hum Genet. 1974;26:588–97.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Lathrop GM, Lalouel JM, Julier C, Ott J. Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci U S A. 1984;81:3443–6.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Cottingham Jr RW, Idury RM, Schaffer AA. Faster sequential genetic linkage computations. Am J Hum Genet. 1993;53:252–63.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet. 1996;58:1347–63.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Gudbjartsson DF, Jonasson K, Frigge ML, Kong A. Allegro, a new computer program for multipoint linkage analysis. Nat Genet. 2000;25:12–3.PubMedGoogle Scholar
  71. 71.
    Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin – rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet. 2002;30:97–101.PubMedGoogle Scholar
  72. 72.
    Sobel E, Lange K. Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet. 1996;58:1323–37.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Hinrichs A, Lin JH, Reich T, Bierut L, Suarez BK. Markov chain Monte Carlo linkage analysis of a complex qualitative phenotype. Genet Epidemiol. 1999;17 Suppl 1:S615–20.PubMedGoogle Scholar
  74. 74.
    Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Lee AB, Luca D, Klei L, Devlin B, Roeder K. Discovering genetic ancestry using spectral graph theory. Genet Epidemiol. 2010;34:51–9.PubMedGoogle Scholar
  76. 76.
    Lee AB, Luca D, Roeder K. A spectral graph approach to discovering genetic ancestry. Ann Appl Stat. 2010;4:179–202.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol. 2010;34:816–34.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Colella S, Yau C, Taylor JM, et al. QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res. 2007;35:2013–25.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Wang K, Li M, Hadley D, et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 2007;17:1665–74.PubMedCentralPubMedGoogle Scholar
  81. 81.
    McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Cingolani P, Platts A, le Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–81.PubMedGoogle Scholar
  85. 85.
    Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Cooper GM, Stone EA, Asimenos G, et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005;15:901–13.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet. 2011;89:82–93.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Koskinen VR, Emery PA, Creasy DM, Cottrell JS. Hierarchical clustering of shotgun proteomics data. Mol Cell Proteomics. 2011;10:M110 003822.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Stessl M, Noe CR, Lachmann B. Influence of image-analysis software on quantitation of two-dimensional gel electrophoresis data. Electrophoresis. 2009;30:325–8.PubMedGoogle Scholar
  91. 91.
    R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2012.Google Scholar
  92. 92.
    Ejigu BA, Valkenborg D, Baggerman G, et al. Evaluation of normalization methods to pave the way towards large-scale LC-MS-based metabolomics profiling experiments. OMICS. 2013;17:473–85.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Pedreschi R, Hertog ML, Carpentier SC, et al. Treatment of missing values for multivariate statistical analysis of gel-based proteomics data. Proteomics. 2008;8:1371–83.PubMedGoogle Scholar
  94. 94.
    Fay MP, Proschan MA. Wilcoxon-Mann–Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat Surv. 2010;4:1–39.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Glickman ME, Rao SR, Schultz MR. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J Clin Epidemiol. 2014;67:850–7.PubMedGoogle Scholar
  96. 96.
    Jensen KN, Jessen F, Jorgensen BM. Multivariate data analysis of two-dimensional gel electrophoresis protein patterns from few samples. J Proteome Res. 2008;7:1288–96.PubMedGoogle Scholar
  97. 97.
    Beck Jr LH, Bonegio RG, Lambeau G, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med. 2009;361:11–21.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Kiryluk K, Li Y, Sanna-Cherchi S, et al. Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet. 2012;8:e1002765.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Saisawat P, Kohl S, Hilger AC, et al. Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association. Kidney Int. 2014;85:1310–7.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Gee HY, Ashraf S, Wan X, et al. Mutations in EMP2 cause childhood-onset nephrotic syndrome. Am J Hum Genet. 2014;94:884–90.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Prunotto M, Farina A, Lane L, et al. Proteomic analysis of podocyte exosome-enriched fraction from normal human urine. J Proteomics. 2013;82:193–229.PubMedGoogle Scholar
  102. 102.
    Hays T, Ma’ayan A, Clark NR, et al. Proteomics analysis of the non-muscle myosin heavy chain IIa-enriched actin-myosin complex reveals multiple functions within the podocyte. PLoS One. 2014;9:e100660.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Bruschi M, Carnevali ML, Murtas C, et al. Direct characterization of target podocyte antigens and auto-antibodies in human membranous glomerulonephritis: alfa-enolase and borderline antigens. J Proteomics. 2011;74:2008–17.PubMedGoogle Scholar
  104. 104.
    Bruschi M, Sinico RA, Moroni G, et al. Glomerular autoimmune multicomponents of human lupus nephritis in vivo: alpha-enolase and annexin AI. J Am Soc Nephrol. 2014;25:2483.PubMedGoogle Scholar
  105. 105.
    Candiano G, Musante L, Bruschi M, et al. Repetitive fragmentation products of albumin and alpha1-antitrypsin in glomerular diseases associated with nephrotic syndrome. J Am Soc Nephrol. 2006;17:3139–48.PubMedGoogle Scholar
  106. 106.
    Musante L, Bruschi M, Candiano G, et al. Characterization of oxidation end product of plasma albumin ‘in vivo’. Biochem Biophys Res Commun. 2006;349:668–73.PubMedGoogle Scholar
  107. 107.
    Santucci L, Candiano G, Petretto A, et al. From hundreds to thousands: widening the normal human Urinome (1). J Proteomics. 2014;112C:53.Google Scholar
  108. 108.
    Ngai HH, Sit WH, Jiang PP, Thongboonkerd V, Wan JM. Markedly increased urinary preprohaptoglobin and haptoglobin in passive Heymann nephritis: a differential proteomics approach. J Proteome Res. 2007;6:3313–20.PubMedGoogle Scholar
  109. 109.
    Shui HA, Huang TH, Ka SM, Chen PH, Lin YF, Chen A. Urinary proteome and potential biomarkers associated with serial pathogenesis steps of focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2008;23:176–85.PubMedGoogle Scholar
  110. 110.
    Varghese SA, Powell TB, Budisavljevic MN, et al. Urine biomarkers predict the cause of glomerular disease. J Am Soc Nephrol. 2007;18:913–22.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Decramer S, Wittke S, Mischak H, et al. Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis. Nat Med. 2006;12:398–400.PubMedGoogle Scholar
  112. 112.
    O’Riordan E, Orlova TN, Podust VN, et al. Characterization of urinary peptide biomarkers of acute rejection in renal allografts. Am J Transplant. 2007;7:930–40.PubMedGoogle Scholar
  113. 113.
    Vilasi A, Cutillas PR, Maher AD, et al. Combined proteomic and metabonomic studies in three genetic forms of the renal Fanconi syndrome. Am J Physiol Renal Physiol. 2007;293:F456–67.PubMedGoogle Scholar
  114. 114.
    Psihogios NG, Kalaitzidis RG, Dimou S, Seferiadis KI, Siamopoulos KC, Bairaktari ET. Evaluation of tubulointerstitial lesions’ severity in patients with glomerulonephritides: an NMR-based metabonomic study. J Proteome Res. 2007;6:3760–70.PubMedGoogle Scholar
  115. 115.
    Murtas C, Bruschi M, Carnevali ML, et al. In vivo characterization of renal auto-antigens involved in human auto-immune diseases: the case of membranous glomerulonephritis. Proteomics Clin Appl. 2011;5:90–7.PubMedGoogle Scholar
  116. 116.
    Murtas C, Allegri L, Ghiggeri GM. Circulating antipodocyte antibodies in membranous nephropathy: new findings. Am J Kidney Dis. 2013;62:12–5.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Gian Marco Ghiggeri
    • 1
  • Maurizio Bruschi
    • 1
  • Simone Sanna-Cherchi
    • 2
  1. 1.Laboratory of Physiopathology of Uremia, Division of Nephrology, Dialysis and TransplantationIstituto Giannina GasliniGenoaItaly
  2. 2.Division of NephrologyColumbia University, College of Physicians and SurgeonsNew YorkUSA

Personalised recommendations