Encyclopedia of Cancer

Living Edition
| Editors: Manfred Schwab

Bystander Effect

Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27841-9_755-9

Synonyms

Definition

The term “bystander effect” refers to changes in naïve (“bystander”) cells sharing the same milieu with cells that have been damaged. The radiation-induced bystander effect (RIBE) is now a well-established consequence of ionizing radiation and is manifested as increased genomic abnormalities and loss of viability of unirradiated cells associated with the targeted cells.

Characteristics

The term “bystander effect” was first used to explain the results obtained in cell cultures irradiated with α-particles (energetic helium nuclei with the short range of absorption which can be produced by cyclotrons or synchrotrons). Although only a few cells were traversed by α-particles, many more exhibited sister chromatid exchanges, indicating that...

Keywords

Thymidine Kinase Bystander Effect Irradiate Cell Suicide Gene Therapy Abscopal Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

References

  1. Ilnytskyy Y, Kovalchuk O (2011) Non-targeted radiation effects-an epigenetic connection. Mutat Res 714:113–125PubMedCrossRefGoogle Scholar
  2. Mesnil M, Yamasaki H (2000) Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication. Cancer Res 60:3989–3999PubMedGoogle Scholar
  3. Nagasawa H, Little JB (1992) Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res 52:6394–6396PubMedGoogle Scholar
  4. Prise KM, O’Sullivan JM (2009) Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer 9:351–360PubMedPubMedCentralCrossRefGoogle Scholar
  5. Redon CE, Dickey JS, Nakamura AJ, Kareva IG, Naf D, Nowsheen S, Kryston TB, Bonner WM, Georgakilas AG, Sedelnikova OA (2010) Tumors induce complex DNA damage in distant proliferative tissues in vivo. Proc Natl Acad Sci USA 107:17992–17997PubMedPubMedCentralCrossRefGoogle Scholar
  6. Xue LY, Butler NJ, Makrigiorgos GM, Adelstein SJ, Kassis AI (2002) Bystander effect produced by radiolabeled tumor cells in vivo. Proc Natl Acad Sci USA 99:13765–13770PubMedPubMedCentralCrossRefGoogle Scholar

See Also

  1. (2012) Alpha-particles. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 147. doi:10.1007/978-3-642-16483-5_208Google Scholar
  2. (2012) DNA. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1129. doi:10.1007/978-3-642-16483-5_1663Google Scholar
  3. (2012) Epigenetic. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1283. doi:10.1007/978-3-642-16483-5_1940Google Scholar
  4. (2012) Interleukin-1. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1892. doi:10.1007/978-3-642-16483-5_3095Google Scholar
  5. (2012) Interleukin-8. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1896. doi:10.1007/978-3-642-16483-5_3100Google Scholar
  6. (2012) Ionizing radiation. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1907. doi:10.1007/978-3-642-16483-5_3139Google Scholar
  7. (2012) MCP-1. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 2192. doi:10.1007/978-3-642-16483-5_3576Google Scholar
  8. (2012) Micronucleus. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 2300. doi:10.1007/978-3-642-16483-5_3726Google Scholar
  9. (2012) Mutation. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 2412. doi:10.1007/978-3-642-16483-5_3911Google Scholar
  10. (2012) Neoplastic cell transformation. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 2474. doi:10.1007/978-3-642-16483-5_4013Google Scholar
  11. (2012) Senescence. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3370. doi:10.1007/978-3-642-16483-5_5236Google Scholar
  12. (2012) Sister chromatid exchange. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3418. doi:10.1007/978-3-642-16483-5_5328Google Scholar
  13. (2012) TGF-β. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3661. doi:10.1007/978-3-642-16483-5_5753Google Scholar
  14. (2012) TNF-α. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3713. doi:10.1007/978-3-642-16483-5_5841Google Scholar
  15. (2012) Tumor necrosis factor-α. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3800. doi:10.1007/978-3-642-16483-5_6041Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Division of Radiation Oncology and Cancer ImagingMolecular Radiation Biology Laboratory, Peter MacCallum Cancer CentreMelbourneAustralia
  2. 2.The Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneAustralia