Encyclopedia of Cancer

Living Edition
| Editors: Manfred Schwab

PUMA

Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27841-9_4867-2

Synonyms

Definition

PUMA (p53 upregulated modulator of apoptosis) is a p53 target and an initiator of apoptosis. PUMA is a member of the BCL-2 protein family, which are evolutionarily conserved regulators of apoptosis. Signaling by PUMA is critical for the apoptosis induced by p53 and a wide range of anticancer agents.

Characteristics

Discovery and Function

PUMA was independently identified by three groups in 2001 based on its transcriptional induction by the tumor suppressor p53 and interaction with the antiapoptotic protein Bcl-2. It is highly conserved between mouse and human, with over 90 % of sequence identity at both DNA and protein levels. However, no PUMA homologue has been identified in lower eukaryotes.

PUMA belongs to the BH3-only subgroup of Bcl-2 family proteins, which share sequence similarity only within the BH3 (Bcl-2 homology 3) domain, a short nine-amino acid stretch. More than ten BH3-only proteins have been identified in...

Keywords

Growth Factor Deprivation Puma Expression Extensive Alternative Splice Irreversible Cell Death Worm Nematode Caenorhabditis Elegans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326CrossRefPubMedGoogle Scholar
  2. Chen D, Wei L, Yu J, Zhang L (2014) Regorafenib inhibits colorectal tumor growth through PUMA-mediated apoptosis. Clin Cancer Res 20(13):3472–3484CrossRefPubMedPubMedCentralGoogle Scholar
  3. Dudgeon C, Peng R, Wang P, Sebastiani A, Yu J, Zhang L (2012) Inhibiting oncogenic signaling by sorafenib activates PUMA via GSK3beta and NF-kappaB to suppress tumor cell growth. Oncogene 31(46):4848–4858CrossRefPubMedPubMedCentralGoogle Scholar
  4. He K, Zheng X, Zhang L, Yu J (2013) Hsp90 inhibitors promote p53-dependent apoptosis through PUMA and Bax. Mol Cancer Ther 12(11):2559–2568CrossRefPubMedGoogle Scholar
  5. Korsmeyer SJ (1999) BCL-2 gene family and the regulation of programmed cell death. Cancer Res 59:1693s–1700sPubMedGoogle Scholar
  6. Labi V, Erlacher M, Kiessling S et al (2006) BH3-only proteins in cell death initiation, malignant disease and anticancer therapy. Cell Death Differ 13:1325–1338CrossRefPubMedGoogle Scholar
  7. Qiu W, Carson-Walter EB, Liu H et al (2008) PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell 2(6):576–583CrossRefPubMedPubMedCentralGoogle Scholar
  8. Sun Q, Ming L, Thomas SM et al (2009) PUMA mediates EGFR tyrosine kinase inhibitor-induced apoptosis in head and neck cancer cells. Oncogene 18(28):2348–2357CrossRefGoogle Scholar
  9. Wang P, Qiu W, Dudgeon C et al (2009) PUMA is directly activated by NF-kappaB and contributes to TNF-alpha-induced apoptosis. Cell Death Differ 16(9):1192–1202CrossRefPubMedPubMedCentralGoogle Scholar
  10. Wang X, Wei L, Cramer JM et al (2015) Pharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation. Sci Rep 5:8566CrossRefPubMedPubMedCentralGoogle Scholar
  11. Yu J, Zhang L (2003) No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell 4:248–249CrossRefPubMedGoogle Scholar
  12. Yu J, Zhang L (2008) PUMA, a potent killer with or without p53. Oncogene 27(Suppl 1):S71–S83CrossRefPubMedPubMedCentralGoogle Scholar
  13. Yu J, Yue W, Wu B et al (2006) PUMA sensitizes lung cancer cells to chemotherapeutic agents and irradiation. Clin Cancer Res 12:2928–2936CrossRefPubMedGoogle Scholar
  14. Zheng X, He K, Zhang L, Yu J (2013) Crizotinib induces PUMA-dependent apoptosis in colon cancer cells. Mol Cancer Ther 12(5):777–786CrossRefPubMedPubMedCentralGoogle Scholar

See Also

  1. (2012) Alternative RNA splicing. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 148. doi:10.1007/978-3-642-16483-5_212Google Scholar
  2. (2012) BAK. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 338. doi:10.1007/978-3-642-16483-5_521Google Scholar
  3. (2012) BAX. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 350. doi:10.1007/978-3-642-16483-5_543Google Scholar
  4. (2012) Bcl-XL . In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 368. doi:10.1007/978-3-642-16483-5_569 Google Scholar
  5. (2012) BH. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 389. doi:10.1007/978-3-642-16483-5_598Google Scholar
  6. (2012) Cytochrome c. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1043. doi:10.1007/978-3-642-16483-5_1458Google Scholar
  7. (2012) FOXO 3A. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1447. doi:10.1007/978-3-642-16483-5_2257Google Scholar
  8. (2012) Homolog. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1725. doi:10.1007/978-3-642-16483-5_2800Google Scholar
  9. (2012) P53. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 2747. doi:10.1007/978-3-642-16483-5_4331Google Scholar
  10. (2012) P73. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 2752. doi:10.1007/978-3-642-16483-5_4334Google Scholar
  11. (2012) SMAC/Diablo. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3440. doi:10.1007/978-3-642-16483-5_5359Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PathologyUniversity of Pittsburgh Cancer Institute, University of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Department of Pharmacology and Chemical BiologyUniversity of Pittsburgh Cancer Institute, University of Pittsburgh School of MedicinePittsburghUSA