Encyclopedia of Astrobiology

Living Edition
| Editors: Muriel Gargaud, William M. Irvine, Ricardo Amils, Henderson James Cleaves, Daniele Pinti, José Cernicharo Quintanilla, Michel Viso


  • Zoe V. FinkelEmail author
  • Andrew J. Irwin
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27833-4_5416-1



The term plankton comes from the Greek meaning to drift or wander and was introduced in 1887 by Victor Hensen to refer to biological matter that drifts in bodies of water (Mills 1989). The term phytoplankton refers to the photosynthetic species of the plankton community. Phytoplankton are a genetically diverse set of organisms that include the prokaryotic cyanobacteria and many eukaryotic groups (Hackett et al. 2007; Simon et al. 2009).


Evolutionary History

Microfossil and molecular clock evidence indicates that prokaryotes originated in the Archean and eukaryotes in the Proterozoic (Betts et al. 2018). Determining when these groups first became photosynthetic, first became planktonic, and whether they originally inhabited fresh or marine environments is extremely challenging. Analyses of extant cyanobacterial genomes indicate that photosynthesis may have been acquired relatively late in the evolution of cyanobacteria, perhaps not long...


Algae Phytoplankton Primary production Biogeochemistry Climate change 
This is a preview of subscription content, log in to check access.

References and Further Reading

  1. Behrenfeld MJ, O’Malley R, Siegel D, McClain C, Sarmiento J, Feldman G, Milligan A, Falkowski P, Letelier R, Boss E (2006) Climate-driven trends in contemporary ocean productivity. Nature (London) 444:752–755ADSCrossRefGoogle Scholar
  2. Betts HC, Puttick MN, Clark JW, Williams TA, Donoghue PCJ, Pisani D (2018) Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat Ecol Evol 2(10):1556–1562.  https://doi.org/10.1038/s41559-018-0644-xCrossRefGoogle Scholar
  3. de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, Lara E, Berney C, Le Bescot N, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury J-M, Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horák A, Jaillon O, Lima-Mendez G, Lukeš J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Tara Oceans Coordinators, Acinas SG, Bork P, Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki ME, Speich S, Stemmann L, Sunagawa S, Weissenbach J, Wincker P, Karsenti E (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348(6237):1261605.  https://doi.org/10.1126/science.1261605CrossRefGoogle Scholar
  4. Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206CrossRefGoogle Scholar
  5. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360ADSCrossRefGoogle Scholar
  6. Finkel ZV (2014) Marine net primary production. In: Global environmental change. Springer, Dordrecht, pp 117–124CrossRefGoogle Scholar
  7. Finkel ZV, Katz M, Wright J, Schofield O, Falkowski PG (2005) Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic. Proc Natl Acad Sci USA 102(25):8927–8932ADSCrossRefGoogle Scholar
  8. Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32(1):119–137CrossRefGoogle Scholar
  9. Hackett JD, Su Yoon H, Butterfield NJ, Sanderson MJ, Bhattacharya D (2007) Chapter 7 – Plastid endosymbiosis: sources and timing of the major events. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Academic, Burlington, pp 109–132.  https://doi.org/10.1016/B978-012370518-1/50008-4CrossRefGoogle Scholar
  10. Hutchins DA, Fu F-X, Zhang Y, Warner ME, Feng Y, Portune K, Bernhardt PW, Mulholland MR (2007) CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: implications for past, present, and future ocean biogeochemistry. Limnol Oceanogr 52(4):1293–1304.  https://doi.org/10.4319/lo.2007.52.4.1293ADSCrossRefGoogle Scholar
  11. Katz ME, Finkel ZV, Gryzebek D, Knoll AH, Falkowski PG (2004) Eucaryotic phytoplankton: evolutionary trajectories and global biogeochemical cycles. Annu Rev Ecol Evol Syst 35:523–556.  https://doi.org/10.1146/annurev.ecolsys.35.112202.130137CrossRefGoogle Scholar
  12. Martínez-Pérez C, Mohr W, Löscher CR, Dekaezemacker J, Littmann S, Yilmaz P, Lehnen N, Fuchs BM, Lavik G, Schmitz RA, LaRoche J, Kuypers MMM (2016) The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat Microbiol 1:16163.  https://doi.org/10.1038/nmicrobiol.2016.163. https://www.nature.com/articles/nmicrobiol2016163-supplementary-informationCrossRefGoogle Scholar
  13. Massana R (2011) Eukaryotic picoplankton in surface oceans. Annu Rev Microbiol 65(1):91–110.  https://doi.org/10.1146/annurev-micro-090110-102903CrossRefGoogle Scholar
  14. Mills EL (1989) Biological oceanography. An early history, 1870–1960. Cornell University Press, Ithaca/LondonGoogle Scholar
  15. Monteiro FM, Bach LT, Brownlee C, Bown P, Rickaby REM, Poulton AJ, Tyrrell T, Beaufort L, Dutkiewicz S, Gibbs S, Gutowska MA, Lee R, Riebesell U, Young J, Ridgwell A (2016) Why marine phytoplankton calcify. Sci Adv 2(7):e1501822.  https://doi.org/10.1126/sciadv.1501822ADSCrossRefGoogle Scholar
  16. Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63(1):106–127CrossRefGoogle Scholar
  17. Richardson TL, Jackson GA (2007) Small phytoplankton and carbon export from the surface ocean. Science 315:838–840ADSCrossRefGoogle Scholar
  18. Riebesell U, Wolf-Gladrow DA, Smetacek V (1993) Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361:249–251ADSCrossRefGoogle Scholar
  19. Sánchez-Baracaldo P (2015) Origin of marine planktonic cyanobacteria. Sci Rep 5:17418.  https://doi.org/10.1038/srep17418. https://www.nature.com/articles/srep17418-supplementary-informationADSCrossRefGoogle Scholar
  20. Sieburth JM, Smetacek V, Lenz J (1978) Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol Oceanogr 23(6):1256–1263ADSCrossRefGoogle Scholar
  21. Simon N, Cras A-L, Foulon E, Lemée R (2009) Diversity and evolution of marine phytoplankton. C R Biol 332(2):159–170.  https://doi.org/10.1016/j.crvi.2008.09.009CrossRefGoogle Scholar
  22. Sohm JA, Webb EA, Capone DG (2011) Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol 9:499.  https://doi.org/10.1038/nrmicro2594CrossRefGoogle Scholar
  23. Soo RM, Hemp J, Parks DH, Fischer WW, Hugenholtz P (2017) On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science 355(6332):1436–1440.  https://doi.org/10.1126/science.aal3794ADSCrossRefGoogle Scholar
  24. Sournia A, Chretiennot-Dinet M-J, Ricard M (1991) Marine phytoplankton: how many species in the world ocean? J Plankton Res 13(5):1093–1099CrossRefGoogle Scholar
  25. Stoecker DK, Hansen PJ, Caron DA, Mitra A (2017) Mixotrophy in the marine plankton. Annu Rev Mar Sci 9(1):311–335.  https://doi.org/10.1146/annurev-marine-010816-060617ADSCrossRefGoogle Scholar
  26. Subramaniam A, Yager PL, Carpenter EJ, Mahaffey C, Björkman K, Cooley S, Kustka AB, Montoya JP, Sañudo-Wilhelmy SA, Shipe R, Capone DG (2008) Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean. Proc Natl Acad Sci USA 105(30): 10460–10465.  https://doi.org/10.1073/pnas.0710279105ADSCrossRefGoogle Scholar
  27. Tang EPY (1996) Why do dinoflagellates have lower growth rates? J Phycol 32(1):80–84MathSciNetCrossRefGoogle Scholar
  28. Tréguer P, Bowler C, Moriceau B, Dutkiewicz S, Gehlen M, Leblanc K, Aumont O, Bittner L, Dugdale R, Finkel Z, Guidi L, Iudicone D, Jahn O, Lasbleiz M, Levy M, Pondaven P (2017) Influence of diatom diversity on the ocean biological carbon pump. Nat Geosci 11:27.  https://doi.org/10.1038/s41561-017-0028-xADSCrossRefGoogle Scholar
  29. Villareal TA (1994) Widespread occurrence of the Hemiaulus-cyanobacterial symbiosis in the southwest North Atlantic Ocean. Bull Mar Sci 54(1):1–7Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of OceanographyDalhousie UniversityHalifaxCanada
  2. 2.Department of Mathematics and StatisticsDalhousie UniversityHalifaxCanada