Encyclopedia of Astrobiology

Living Edition
| Editors: Muriel Gargaud, William M. Irvine, Ricardo Amils, Henderson James Cleaves, Daniele Pinti, José Cernicharo Quintanilla, Michel Viso

Iron Reduction

  • Nathaniel W. Fortney
  • Stephanie A. Napieralski
  • Eric E. RodenEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27833-4_5402-1

Acronyms

DIR

Dissimilatory iron reduction

DIRM

Dissimilatory iron reducing microorganisms

Definition

Dissimilatory iron reduction (DIR) is a form of anaerobic (without oxygen) microbial respiration whereby energy is generated by coupling the oxidation (removal of electrons) of organic matter (chemoorganotrophy) or H2 (chemolithotrophy) to the reduction (addition of electrons) of ferric iron [Fe(III)]. DIR can by generalized by the following equations, where “CH2O” represents a single unit of organic carbon, and Fe(OH)3 represents an iron oxide mineral phase:

Chemoorganotrophic Fe(III) reduction:
$$ {\mathrm{CH}}_2\mathrm{O}+4\mathrm{Fe}{\left(\mathrm{OH}\right)}_3+7{\mathrm{H}}^{+}\to 4{\mathrm{Fe}}^{2+}+{\mathrm{H}\mathrm{CO}}_3^{-}+10{\mathrm{H}}_2\mathrm{O} $$

Keywords

Electron donor Electron acceptor Iron Reduction 
This is a preview of subscription content, log in to check access.

References and Further Reading

  1. Cloud PE (1965) Significance of the Gunflint (Precambrian) microflora. Science 148:27–35ADSCrossRefGoogle Scholar
  2. Emerson D, Roden E, Twining BS (2012) The microbial ferrous wheel: iron cycling in terrestrial, freshwater, and marine environments. Front Microbiol 3:383.  https://doi.org/10.3389/fmicb.2012.00383CrossRefGoogle Scholar
  3. Gold T (1992) The deep, hot biosphere. Proc Natl Acad Sci U S A 89:6045–6049ADSCrossRefGoogle Scholar
  4. Howard AW et al (2013) A rocky composition for an Earth-sized exoplanet. Nature 503:381–384.  https://doi.org/10.1038/nature12767ADSCrossRefGoogle Scholar
  5. Jimenez-Lopez C, Romanek CS, Bazylinski DA (2010) Magnetite as a prokaryotic biomarker: a review. J Geophys Res 115:19.  https://doi.org/10.1029/2009jg001152CrossRefGoogle Scholar
  6. Johnson CM, Beard BL, Roden EE (2008) The iron isotope fingerprints of redox and biogeochemical cycling in the modern and ancient Earth. Annu Rev Earth Planet Sci 36:457–493ADSCrossRefGoogle Scholar
  7. Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934CrossRefGoogle Scholar
  8. Konhauser KO, Newman DK, Kappler A (2005) The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology 3:167–177CrossRefGoogle Scholar
  9. Konhauser KO, Kappler A, Roden EE (2011) Iron in microbial metabolisms. Elements 7:89–93.  https://doi.org/10.2113/gselements.7.2.89CrossRefGoogle Scholar
  10. Lin WC, Coppi MV, Lovley DR (2004) Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. Appl Environ Microbiol 70:2525–2528.  https://doi.org/10.1128/AEM.70.4.2525-2528.2004CrossRefGoogle Scholar
  11. Lovley DR (2004) Potential role of dissimilatory iron reduction in the early evolution of microbial respiration. In Seckbach J (ed) Origins, Evolution and Biodiversity of Microbial Life, Kluwer, Amsterdam p 301-313Google Scholar
  12. Lovley DR, Phillips EJP (1987) Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl Environ Microbiol 53:2636–2641Google Scholar
  13. Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microbiol Physiol. 49:219–286Google Scholar
  14. Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru AE, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP 2011. Geobacter: The microbe electric’s physiology, ecology, and practical applications. Adv. Microb. Physiol. 59:1–100Google Scholar
  15. McKay DS et al (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924–930.  https://doi.org/10.1126/science.273.5277.924ADSCrossRefGoogle Scholar
  16. Mumma MJ et al (2009) Strong release of methane on Mars in northern summer 2003. Science 323:1041–1045.  https://doi.org/10.1126/science.1165243ADSCrossRefGoogle Scholar
  17. Roden EE, Zachara JM (1996) Microbial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growth. Environ Sci Technol 30:1618–1628ADSCrossRefGoogle Scholar
  18. Roh Y, Liu SV, Li G, Huang H, Phelps TJ, Zhou J (2002) Isolation and characterization of metal-reducing Thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado. Appl Environ Microbiol 68:6013–6020CrossRefGoogle Scholar
  19. Shi L et al (2016) Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14:651–662.  https://doi.org/10.1038/nrmicro.2016.93CrossRefGoogle Scholar
  20. Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67ADSCrossRefGoogle Scholar
  21. Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764.  https://doi.org/10.1038/nrmicro1490CrossRefGoogle Scholar
  22. Weiss BP, Yung YL, Nealson KH (2000) Atmospheric energy for subsurface life on Mars? Proc Natl Acad Sci U S A 97:1395–1399ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Nathaniel W. Fortney
    • 1
  • Stephanie A. Napieralski
    • 1
  • Eric E. Roden
    • 1
    Email author
  1. 1.University of Wisconsin–MadisonMadisonUSA