Skip to main content

Iron Oxidation

  • Living reference work entry
  • First Online:
  • 56 Accesses

Acronyms

FeOB; Iron-oxidizing bacteria

Definition

Iron oxidation is a chemolithotrophic microbial metabolism whereby metabolic energy is generated via the removal of electrons (oxidation) from inorganic ferrous iron [Fe(II)]-containing compounds, resulting in the formation of ferric iron [Fe(III)]-containing compounds.

Overview

Prokaryotic organisms are capable of generating metabolic energy from the oxidation of Fe(II) to Fe(III), often coupled to autotrophic growth (chemolithoautotrophy) (Konhauser et al. 2011). A wide range of environments are present on Earth where microorganisms are known to participate in Fe(II) oxidation (Fig. 1). Due to the rapid rate of abiotic oxidation of soluble Fe(II) by oxygen at neutral pH (Singer and Stumm 1970), several strategies exist for iron-oxidizing bacteria (FeOB) to compete with abiotic oxidation including oxidation of soluble Fe(II) at neutral pH under low-oxygen conditions, oxidation of insoluble Fe(II) mineral phases at neutral pH,...

This is a preview of subscription content, log in via an institution.

References and Further Reading

  • Benzine J, Shelobolina E, Xiong MY, Kennedy DW, McKinley JP, Lin X, Roden EE (2013) Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments. Front Microbiol 4. https://doi.org/10.3389/fmicb.2013.00388

  • Camacho A, Walter XA, Picazo A, Zopfi J (2017) Photoferrotrophy: remains of an ancient photosynthesis in modern environments. Front Microbiol 8:323–323. https://doi.org/10.3389/fmicb.2017.00323

    Article  Google Scholar 

  • Chan MA, Beitler B, Parry WT, Ormo J, Komatsu G (2004) A possible terrestrial analogue for haematite concretions on Mars. Nature 429:731–734

    Article  ADS  Google Scholar 

  • Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1701–1876

    Article  Google Scholar 

  • Emerson D, Fleming EJ, McBeth JM (2010) Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64:561–583

    Article  Google Scholar 

  • Foley CN, Economou T, Clayton RN (2003) Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer. J Geophys Res-Planets 108. https://doi.org/10.1029/2002je002019

  • Grotzinger JP et al (2014) A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343. https://doi.org/10.1126/science.1242777

    Article  Google Scholar 

  • Howard AW et al (2013) A rocky composition for an Earth-sized exoplanet. Nature 503:381–384. https://doi.org/10.1038/nature12767

    Article  ADS  Google Scholar 

  • Jakosky BM, Shock EL (1998) The biological potential of Mars, the early Earth, and Europa. J Geophys Res 103:19359–19364

    Article  ADS  Google Scholar 

  • Jepsen SM, Priscu JC, Grimm RE, Bullock MA (2007) The potential for lithoautotrophic life on Mars: application to shallow interfacial water environments. Astrobiology 7:342–354

    Article  ADS  Google Scholar 

  • Kappler A, Pasquero C, Konhauser KO, Newman DK (2005) Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33:865–868. https://doi.org/10.1130/G21658.1

    Article  ADS  Google Scholar 

  • Konhauser KO, Kappler A, Roden EE (2011) Iron in microbial metabolisms. Elements 7:89–93. https://doi.org/10.2113/gselements.7.2.89

    Article  Google Scholar 

  • Moses CO, Kirk Nordstrom D, Herman JS, Mills AL (1987) Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim Cosmochim Acta 51:1561–1571. https://doi.org/10.1016/0016-7037(87)90337-1

    Article  ADS  Google Scholar 

  • Ormo J, Komatsu G, Chan MA, Beitler B, Parry WT (2004) Geological features indicative of processes related to hematite formation in Meridiani Planum and Arom Chaos, Mars: a comparison with diagenetic hematite deposits in southern Utah, USA. Icarus 171:295–316

    Article  ADS  Google Scholar 

  • Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279:1519–1522

    Article  ADS  Google Scholar 

  • Shelobolina E, Xu H, Konishi H, Kukkadapu R, Wu T, Blöthe M, Roden E (2012) Microbial lithotrophic oxidation of structural Fe(II) in biotite. Appl Environ Microbiol 78:5746–5752. https://doi.org/10.1128/AEM.01034-12

    Article  Google Scholar 

  • Singer PC, Stumm W (1970) Acid mine drainage – the rate limiting step. Science 167:1121–1123

    Article  ADS  Google Scholar 

  • Squyres SW et al (2004) In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306:1709–1714

    Article  ADS  Google Scholar 

  • Straub KL, Benz M, Schink B, Widdel F (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62:1458–1460

    Article  Google Scholar 

  • Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–835

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric E. Roden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Napieralski, S.A., Fortney, N.W., Roden, E.E. (2020). Iron Oxidation. In: Gargaud, M., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27833-4_5401-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27833-4_5401-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27833-4

  • Online ISBN: 978-3-642-27833-4

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics