Encyclopedia of Astrobiology

Living Edition
| Editors: Muriel Gargaud, William M. Irvine, Ricardo Amils, Henderson James Cleaves, Daniele Pinti, José Cernicharo Quintanilla, Michel Viso

Iron Oxidation

  • Stephanie A. Napieralski
  • Nathaniel W. Fortney
  • Eric E. RodenEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27833-4_5401-1



Iron oxidation is a chemolithotrophic microbial metabolism whereby metabolic energy is generated via the removal of electrons (oxidation) from inorganic ferrous iron [Fe(II)]-containing compounds, resulting in the formation of ferric iron [Fe(III)]-containing compounds.


Prokaryotic organisms are capable of generating metabolic energy from the oxidation of Fe(II) to Fe(III), often coupled to autotrophic growth (chemolithoautotrophy) (Konhauser et al. 2011). A wide range of environments are present on Earth where microorganisms are known to participate in Fe(II) oxidation (Fig. 1). Due to the rapid rate of abiotic oxidation of soluble Fe(II) by oxygen at neutral pH (Singer and Stumm 1970), several strategies exist for iron-oxidizing bacteria (FeOB) to compete with abiotic oxidation including oxidation of soluble Fe(II) at neutral pH under low-oxygen conditions, oxidation of insoluble Fe(II) mineral phases at neutral pH,...


Chemolithotrophy Electron donor Iron Iron Cycle Mars 
This is a preview of subscription content, log in to check access.

References and Further Reading

  1. Benzine J, Shelobolina E, Xiong MY, Kennedy DW, McKinley JP, Lin X, Roden EE (2013) Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments. Front Microbiol 4.  https://doi.org/10.3389/fmicb.2013.00388
  2. Camacho A, Walter XA, Picazo A, Zopfi J (2017) Photoferrotrophy: remains of an ancient photosynthesis in modern environments. Front Microbiol 8:323–323.  https://doi.org/10.3389/fmicb.2017.00323CrossRefGoogle Scholar
  3. Chan MA, Beitler B, Parry WT, Ormo J, Komatsu G (2004) A possible terrestrial analogue for haematite concretions on Mars. Nature 429:731–734ADSCrossRefGoogle Scholar
  4. Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1701–1876CrossRefGoogle Scholar
  5. Emerson D, Fleming EJ, McBeth JM (2010) Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64:561–583CrossRefGoogle Scholar
  6. Foley CN, Economou T, Clayton RN (2003) Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer. J Geophys Res-Planets 108.  https://doi.org/10.1029/2002je002019
  7. Grotzinger JP et al (2014) A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343.  https://doi.org/10.1126/science.1242777CrossRefGoogle Scholar
  8. Howard AW et al (2013) A rocky composition for an Earth-sized exoplanet. Nature 503:381–384.  https://doi.org/10.1038/nature12767ADSCrossRefGoogle Scholar
  9. Jakosky BM, Shock EL (1998) The biological potential of Mars, the early Earth, and Europa. J Geophys Res 103:19359–19364ADSCrossRefGoogle Scholar
  10. Jepsen SM, Priscu JC, Grimm RE, Bullock MA (2007) The potential for lithoautotrophic life on Mars: application to shallow interfacial water environments. Astrobiology 7:342–354ADSCrossRefGoogle Scholar
  11. Kappler A, Pasquero C, Konhauser KO, Newman DK (2005) Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33:865–868.  https://doi.org/10.1130/G21658.1ADSCrossRefGoogle Scholar
  12. Konhauser KO, Kappler A, Roden EE (2011) Iron in microbial metabolisms. Elements 7:89–93.  https://doi.org/10.2113/gselements.7.2.89CrossRefGoogle Scholar
  13. Moses CO, Kirk Nordstrom D, Herman JS, Mills AL (1987) Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim Cosmochim Acta 51:1561–1571.  https://doi.org/10.1016/0016-7037(87)90337-1ADSCrossRefGoogle Scholar
  14. Ormo J, Komatsu G, Chan MA, Beitler B, Parry WT (2004) Geological features indicative of processes related to hematite formation in Meridiani Planum and Arom Chaos, Mars: a comparison with diagenetic hematite deposits in southern Utah, USA. Icarus 171:295–316ADSCrossRefGoogle Scholar
  15. Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279:1519–1522ADSCrossRefGoogle Scholar
  16. Shelobolina E, Xu H, Konishi H, Kukkadapu R, Wu T, Blöthe M, Roden E (2012) Microbial lithotrophic oxidation of structural Fe(II) in biotite. Appl Environ Microbiol 78:5746–5752.  https://doi.org/10.1128/AEM.01034-12CrossRefGoogle Scholar
  17. Singer PC, Stumm W (1970) Acid mine drainage – the rate limiting step. Science 167:1121–1123ADSCrossRefGoogle Scholar
  18. Squyres SW et al (2004) In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306:1709–1714ADSCrossRefGoogle Scholar
  19. Straub KL, Benz M, Schink B, Widdel F (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62:1458–1460CrossRefGoogle Scholar
  20. Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–835ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Stephanie A. Napieralski
    • 1
  • Nathaniel W. Fortney
    • 1
  • Eric E. Roden
    • 1
    Email author
  1. 1.University of Wisconsin-MadisonMadisonUSA