Encyclopedia of Astrobiology

Living Edition
| Editors: Muriel Gargaud, William M. Irvine, Ricardo Amils, Henderson James Cleaves, Daniele Pinti, José Cernicharo Quintanilla, Michel Viso

Silicon Isotopes

  • Luc André
  • Damien Cardinal
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27833-4_1448-4


Silicon (Si) is an element present in all natural environments, including the biosphere. It has three stable isotopes of mass 28, 29, and 30, respectively. Its isotopic composition is expressed in the delta notation δ30Si (30Si/28Si) and δ29Si (29Si/28Si) in per mil units normalized to a standard reference (see “Delta, Isotopic”). The δ30Si and δ29Si vary in the solar system by up to 10 ‰ and 5 ‰, respectively. These isotopic changes in Earth and extraterrestrial materials are used to constrain diverse processes such as the origin of the solar system, core-mantle segregation, the appearance of life on the early Earth, the temperatures of the early oceans, the weathering of silicate rocks, or the role of siliceous organisms in C-Si cycles.


The potential role of silica (SiO2) in the emergence of life has been often questioned, especially because SiO2-rich deposits (cherts) host the oldest putative evidence for life. Others have wondered about the biological...


Archean cherts Bulk silicate earth Early life Meteorites Siliceous organisms Weathering 
This is a preview of subscription content, log in to check access.

References and Further Reading

  1. André L, Cardinal D, Alleman LY, Moorbath S (2006) Silicon isotopes in 3.8 Ga West Greenland rocks as clues to the Eoarchaean supracrustal Si cycle. Earth Planet Sci Lett 245:162–173ADSCrossRefGoogle Scholar
  2. Armytage RMG, Georg RB, Savage PS, Williams HM, Halliday AN (2011) Silicon isotopes in meteorites and planetary core formation. Geochim Cosmochim Acta 75:3362–3676Google Scholar
  3. Cardinal D, Alleman LY, de Jong J, Ziegler K, André L (2003) Isotopic composition of silicon measured by multicollector plasma source mass spectrometry in dry plasma mode. J Anal Atom Spectrom 18:213–218CrossRefGoogle Scholar
  4. Chmeleff J, Horn I, Steinhoefel G, von Blanckenburg F (2008) In situ determination of precise stable Si isotope ratios by UV-femtosecond laser ablation high-resolution multi-collector ICP-MS. Chem Geol 249:155–166CrossRefGoogle Scholar
  5. De La Rocha CL, Brzezinski MA, DeNiro MJ (1996) Purification, recovery and laser-driven fluorination of silicon from dissolved and particulate silica for the measurement of natural stable isotope abundances. Anal Chem 68:3746–3750CrossRefGoogle Scholar
  6. Delstanche S, Opfergelt S, Cardinal D, Elsass F, André L, Delvaux B (2009) Silicon isotopic fractionation during adsorption of aqueous monosilicic acid onto iron oxide. Geochim Cosmochim Acta 73:923–934ADSCrossRefGoogle Scholar
  7. Exley C (2009) Darwin, natural selection and the biological essentiality of aluminium and silicon. Trends Biochem Sci 34:589–593CrossRefGoogle Scholar
  8. Fitoussi C, Bourdon B, Kleine T, Oberli F, Reynolds BC (2009) Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth’s core. Earth Planet Sci Lett 287:77–85ADSCrossRefGoogle Scholar
  9. Georg RB, Halliday AN, Schauble EA, Reynolds BC (2007) Silicon in the Earth’s core. Nature 447:1102–1106ADSCrossRefGoogle Scholar
  10. Molini-Velsko C, Mayeda TK, Clayton RN (1986) Isotopic composition of silicon in meteorites. Geochim Cosmochim Acta 50:2719–2726ADSCrossRefGoogle Scholar
  11. Nittler LR, Gallino R, Lugaro M, Straniero O, Dominguez I, Zinner E (2005) Si and C isotopes in Presolar silicon carbide grains from AGB stars. Nucl Phys A 758:348–351ADSCrossRefGoogle Scholar
  12. Opfergelt S, Cardinal D, André L, Delvigne C, Bremond L, Delvaux B (2010) Variations of δ30Si and Ge/Si with weathering and biogenic input in tropical basaltic ash soils under monoculture. Geochim Cosmochim Acta 74:225–240ADSCrossRefGoogle Scholar
  13. Reynolds BC, Aggarwal J, André L, Baxter D, Beucher C, Brzezinski MA, Engström E, Georg RB, Land M, Leng MJ, Opfergelt S, Rodushkin I, Sloane HJ, Van den Boorn SHJM, Vroon PZ, Cardinal D (2007) An inter-laboratory comparison of Si isotope reference materials. J Anal Atom Spectrom 22:561–568CrossRefGoogle Scholar
  14. Richter FM, Dauphas N, Teng F-Z (2009) Non-traditional fractionation of non-traditional isotopes: evaporation, chemical diffusion and Soret diffusion. Chem Geol 258:92–103CrossRefGoogle Scholar
  15. Robert F, Chaussidon M (2006) A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443:969–972ADSCrossRefGoogle Scholar
  16. Savage PS, Moynier F (2013) Silicon isotopic variation in enstatite meteorites: clues to their origin and Earth-forming material. Earth Planet Sci Lett 361:487–496ADSCrossRefGoogle Scholar
  17. Savage PS, Georg RB, Armytage RMG, Williams HM, Halliday AN (2010) Silicon isotope homogeneity in the mantle. Earth Planet Sci Lett 295:139–146ADSCrossRefGoogle Scholar
  18. Savage PS, Georg RB, Williams HM, Turner S, Halliday AN (2012) The isotopic composition of granites. Geochim Cosmochim Acta 92:184–202ADSCrossRefGoogle Scholar
  19. Savage PS, Georg RB, Williams HM, Halliday AN (2013) The silicon isotope composition of the upper continental crust. Geochim Cosmochim Acta 109:384–399ADSCrossRefGoogle Scholar
  20. Shahar A, Young ED (2007) Astrophysics of CAI formation as revealed by silicon isotope La-ICP-MS of an igneous CAI. Earth Planet Sci Lett 257:497–510ADSCrossRefGoogle Scholar
  21. Van den Boorn SHJM, van Bergen MJ, Vroon PZ, de Vries ST, Nijman W (2010) Silicon isotope and trace element constraints on the origin of 3.5 Ga cherts: implications for Early Archaean marine environments. Geochim Cosmochim Acta 74:1077–1103ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Earth SciencesRoyal Museum of Central AfricaTervurenBelgium
  2. 2.LOCEANUniversité Pierre & Marie CurieParisFrance