Skip to main content

Radiogenic Isotopes

  • 1184 Accesses


Radiogenic nuclides


Radiogenic isotopes or radiogenic nuclides are produced by the decay of radioactive nuclei (e.g., 87Sr produced by the decay of 87Rb). The abundances of radiogenic isotopes are commonly reported relative to that of a stable, non-radiogenic isotope of the same element (e.g., 86Sr) as isotope ratios (e.g., 87Sr/86Sr). In geochronology, radiogenic isotopes are used for determining the timing and duration of geological events. They also provide tracers for chemical fractionations of parent and daughter elements by past geological processes, such as the chemical differentiation of the Earth.


Radiogenic isotopes are versatile tools in Earth sciences. In geochronology, they are used to determine the timescales of geological processes ranging from ages of individual minerals to the timescales of large-scale chemical differentiation of asteroids and terrestrial planets. As tracers of geological processes, radiogenic isotopes provide information...


  • Age dating
  • Age of the Earth
  • Age of the Moon
  • Carbonaceous chondrites
  • Core formation
  • Late veneer
  • Mantle-crust evolution
  • Meteorites
  • Water

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References and Further Reading

  • Allègre CJ, Manhés G, Göpel C (1995) The age of the Earth. Geochim Cosmochim Acta 59:1445–1456

    CrossRef  ADS  Google Scholar 

  • Amelin Y, Krot AN, Hutcheon ID, Ulyanov AA (2002) Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297:1678–1683

    CrossRef  ADS  Google Scholar 

  • Amelin Y, Kaltenbach A, Iizuka T, Stirling CH, Ireland TR, Petaev M, Jacobsen SB (2010) U-Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Earth Planet Sci Lett 300:343–350

    CrossRef  ADS  Google Scholar 

  • Boyet M, Carlson RW (2005) 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309:576–581

    CrossRef  ADS  Google Scholar 

  • Canup RM, Asphaug E (2001) Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412:708–712

    CrossRef  ADS  Google Scholar 

  • Caro G, Bourdon B, Birck JL, Moorbath S (2003) 146Sm-142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth’s mantle. Nature 423:428–432

    CrossRef  ADS  Google Scholar 

  • Caro G, Bourdon B, Halliday A, Quitté G (2008) Superchondritic Sm/Nd in Mars, Earth and the Moon. Nature 452:336–339

    CrossRef  ADS  Google Scholar 

  • Chase CG, Patchett PJ (1988) Stored mafic/ultramafic crust and early Archean mantle depletion. Earth Planet Sci Lett 91:66–72

    CrossRef  ADS  Google Scholar 

  • DePaolo DJ, Wasserburg GJ (1976) Nd isotopic variations and petrogenetic models. Geophys Res Lett 3:249–252

    CrossRef  ADS  Google Scholar 

  • Drake MJ, Righter K (2002) Determining the composition of the Earth. Nature 416:39–44

    CrossRef  ADS  Google Scholar 

  • Halliday AN (2008) A young Moon-forming giant impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Philos Trans R Soc 366:4205–4252

    CrossRef  Google Scholar 

  • Harrison TM, Blichert-Toft J, Müller W, Albarède F, Holden P, Mojzsis SJ (2005) Heterogeneous hadean hafnium: evidence of continental crust by 4.4–4.5 Ga. Science 310:1947–1950

    CrossRef  ADS  Google Scholar 

  • Hartmann WK, Davis DR (1975) Satellite-sized planetesimals and lunar origin. Icarus 24:504–505

    CrossRef  ADS  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    CrossRef  ADS  Google Scholar 

  • Jacobsen SB (2005) The Hf-W isotopic system and the origin of the Earth and Moon. Annu Rev Earth Planet Sci 33:531–570

    CrossRef  ADS  Google Scholar 

  • Kleine T, Touboul M, Bourdon B, Nimmo F, Mezger K, Palme H, Yin QZ, Jacobsen SB, Halliday AN (2009) Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim Cosmochim Acta 73:5150–5188

    CrossRef  ADS  Google Scholar 

  • Krot AN, Amelin Y, Bland P, Ciesla FJ, Connelly J, Davis AM, Huss GR, Hutcheon ID, Makide K, Nagashima K, Nyquist LE, Russell SS, Scott ERD, Thrane K, Yurimoto H, Yin QZ (2009) Origin and chronology of chondritic components: a review. Geochim Cosmochim Acta 73:4963–4997

    CrossRef  ADS  Google Scholar 

  • Lee T, Papanastassiou DA, Wasserburg GJ (1977) Aluminum-26 in the early solar system: fossil or fuel? Astrophys J 211:L107–L110

    CrossRef  ADS  Google Scholar 

  • Nemchin A, Timms N, Pidgeon R, Geisler T, Reddy S, Meyer C (2009) Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nat Geosci 2:133–136

    CrossRef  ADS  Google Scholar 

  • Norman MD, Borg LE, Nyquist LE, Bogard DD (2003) Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: clues to the age, origin, structure, and impact history of the lunar crust. Meteorit Planet Sci 38:645–661

    CrossRef  ADS  Google Scholar 

  • Patterson C (1956) Age of meteorites and the Earth. Geochim Cosmochim Acta 10:230–237

    CrossRef  ADS  Google Scholar 

  • Rudge JF, Kleine T, Bourdon B (2010) Broad bounds on Earth’s accretion and core formation constrained by geochemical models. Nat Geosci 3:439–443

    CrossRef  ADS  Google Scholar 

  • Scherer EE, Whitehouse MJ, Münker C (2007) Zircon as a monitor of crustal growth. Elements 3:19–24

    CrossRef  Google Scholar 

  • Stevenson DJ (2008) A planetary perspective on the deep Earth. Nature 451:261–265

    CrossRef  ADS  Google Scholar 

  • Taylor DJ, McKeegan KD, Harrison TM (2009) Lu-Hf zircon evidence for rapid lunar differentiation. Earth Planet Sci Lett 279:157–164

    CrossRef  ADS  Google Scholar 

  • Touboul M, Kleine T, Bourdon B, Palme H, Wieler R (2007) Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450:1206–1209

    CrossRef  ADS  Google Scholar 

  • Walker RJ (2009) Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem Erde 69:101–125

    CrossRef  Google Scholar 

  • Wetherill GW (1986) Accumulation of the terrestrial planets and implications concerning lunar origin. In: Hartmann WK et al (eds) Origin of the Moon. Lunar Planetary Institute, Houston, pp 519–550

    Google Scholar 

  • Wood B, Halliday AN (2010) The lead isotopic age of the Earth can be explained by core formation alone. Nature 465:767–771

    CrossRef  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Thorsten Kleine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kleine, T. (2014). Radiogenic Isotopes. In: , et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27833-4

  • eBook Packages: Springer Reference Physics & AstronomyReference Module Physical and Materials Science