Encyclopedia of Astrobiology

Living Edition
| Editors: Muriel Gargaud, William M. Irvine, Ricardo Amils, Philippe Claeys, Henderson James Cleaves, Maryvonne Gerin, Daniel Rouan, Tilman Spohn, Stéphane Tirard, Michel Viso

Radiogenic Isotopes

Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27833-4_1343-2



Radiogenic isotopes or radiogenic nuclides are produced by the decay of radioactive nuclei (e.g., 87Sr produced by the decay of 87Rb). The abundances of radiogenic isotopes are commonly reported relative to that of a stable, non-radiogenic isotope of the same element (e.g., 86Sr) as isotope ratios (e.g., 87Sr/86Sr). In geochronology, radiogenic isotopes are used for determining the timing and duration of geological events. They also provide tracers for chemical fractionations of parent and daughter elements by past geological processes, such as the chemical differentiation of the Earth.


Radiogenic isotopes are versatile tools in Earth sciences. In geochronology, they are used to determine the timescales of geological processes ranging from ages of individual minerals to the timescales of large-scale chemical differentiation of asteroids and terrestrial planets. As tracers of geological processes, radiogenic isotopes provide information...


Age dating Age of the Earth Age of the Moon Carbonaceous chondrites Core formation Late veneer Mantle-crust evolution Meteorites Water 
This is a preview of subscription content, log in to check access.

References and Further Reading

  1. Allègre CJ, Manhés G, Göpel C (1995) The age of the Earth. Geochim Cosmochim Acta 59:1445–1456CrossRefADSGoogle Scholar
  2. Amelin Y, Krot AN, Hutcheon ID, Ulyanov AA (2002) Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297:1678–1683CrossRefADSGoogle Scholar
  3. Amelin Y, Kaltenbach A, Iizuka T, Stirling CH, Ireland TR, Petaev M, Jacobsen SB (2010) U-Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Earth Planet Sci Lett 300:343–350CrossRefADSGoogle Scholar
  4. Boyet M, Carlson RW (2005) 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309:576–581CrossRefADSGoogle Scholar
  5. Canup RM, Asphaug E (2001) Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412:708–712CrossRefADSGoogle Scholar
  6. Caro G, Bourdon B, Birck JL, Moorbath S (2003) 146Sm-142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth’s mantle. Nature 423:428–432CrossRefADSGoogle Scholar
  7. Caro G, Bourdon B, Halliday A, Quitté G (2008) Superchondritic Sm/Nd in Mars, Earth and the Moon. Nature 452:336–339CrossRefADSGoogle Scholar
  8. Chase CG, Patchett PJ (1988) Stored mafic/ultramafic crust and early Archean mantle depletion. Earth Planet Sci Lett 91:66–72CrossRefADSGoogle Scholar
  9. DePaolo DJ, Wasserburg GJ (1976) Nd isotopic variations and petrogenetic models. Geophys Res Lett 3:249–252CrossRefADSGoogle Scholar
  10. Drake MJ, Righter K (2002) Determining the composition of the Earth. Nature 416:39–44CrossRefADSGoogle Scholar
  11. Halliday AN (2008) A young Moon-forming giant impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Philos Trans R Soc 366:4205–4252CrossRefGoogle Scholar
  12. Harrison TM, Blichert-Toft J, Müller W, Albarède F, Holden P, Mojzsis SJ (2005) Heterogeneous hadean hafnium: evidence of continental crust by 4.4–4.5 Ga. Science 310:1947–1950CrossRefADSGoogle Scholar
  13. Hartmann WK, Davis DR (1975) Satellite-sized planetesimals and lunar origin. Icarus 24:504–505CrossRefADSGoogle Scholar
  14. Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229CrossRefADSGoogle Scholar
  15. Jacobsen SB (2005) The Hf-W isotopic system and the origin of the Earth and Moon. Annu Rev Earth Planet Sci 33:531–570CrossRefADSGoogle Scholar
  16. Kleine T, Touboul M, Bourdon B, Nimmo F, Mezger K, Palme H, Yin QZ, Jacobsen SB, Halliday AN (2009) Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim Cosmochim Acta 73:5150–5188CrossRefADSGoogle Scholar
  17. Krot AN, Amelin Y, Bland P, Ciesla FJ, Connelly J, Davis AM, Huss GR, Hutcheon ID, Makide K, Nagashima K, Nyquist LE, Russell SS, Scott ERD, Thrane K, Yurimoto H, Yin QZ (2009) Origin and chronology of chondritic components: a review. Geochim Cosmochim Acta 73:4963–4997CrossRefADSGoogle Scholar
  18. Lee T, Papanastassiou DA, Wasserburg GJ (1977) Aluminum-26 in the early solar system: fossil or fuel? Astrophys J 211:L107–L110CrossRefADSGoogle Scholar
  19. Nemchin A, Timms N, Pidgeon R, Geisler T, Reddy S, Meyer C (2009) Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nat Geosci 2:133–136CrossRefADSGoogle Scholar
  20. Norman MD, Borg LE, Nyquist LE, Bogard DD (2003) Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: clues to the age, origin, structure, and impact history of the lunar crust. Meteorit Planet Sci 38:645–661CrossRefADSGoogle Scholar
  21. Patterson C (1956) Age of meteorites and the Earth. Geochim Cosmochim Acta 10:230–237CrossRefADSGoogle Scholar
  22. Rudge JF, Kleine T, Bourdon B (2010) Broad bounds on Earth’s accretion and core formation constrained by geochemical models. Nat Geosci 3:439–443CrossRefADSGoogle Scholar
  23. Scherer EE, Whitehouse MJ, Münker C (2007) Zircon as a monitor of crustal growth. Elements 3:19–24CrossRefGoogle Scholar
  24. Stevenson DJ (2008) A planetary perspective on the deep Earth. Nature 451:261–265CrossRefADSGoogle Scholar
  25. Taylor DJ, McKeegan KD, Harrison TM (2009) Lu-Hf zircon evidence for rapid lunar differentiation. Earth Planet Sci Lett 279:157–164CrossRefADSGoogle Scholar
  26. Touboul M, Kleine T, Bourdon B, Palme H, Wieler R (2007) Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450:1206–1209CrossRefADSGoogle Scholar
  27. Walker RJ (2009) Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem Erde 69:101–125CrossRefGoogle Scholar
  28. Wetherill GW (1986) Accumulation of the terrestrial planets and implications concerning lunar origin. In: Hartmann WK et al (eds) Origin of the Moon. Lunar Planetary Institute, Houston, pp 519–550Google Scholar
  29. Wood B, Halliday AN (2010) The lead isotopic age of the Earth can be explained by core formation alone. Nature 465:767–771CrossRefADSGoogle Scholar

Authors and Affiliations

  1. 1.Institut für PlanetologieWestfälische Wilhelms-Universität MünsterMünsterGermany