Advertisement

Skin Itch in the Elderly

  • Jerrold Scott PetrofskyEmail author
Living reference work entry

Abstract

Itching is generally known as pruritus. It is a normal reflex and common in the elderly. Aside from causes such as insect stings and contact with certain marine animals, there are other common causes that can be dermatologic, neuropathic, systemic, and psychogenic. The itch reflex is a complex reflex involving separate receptors on sensory neurons that are similar but distinct from pain sensory fibers in the skin. The receptors can be triggered by histamine, G protein receptors, proteases, and toll-like receptors, through TRPV1, TRPV3, and TRPV4 vanilloid receptors on sensory nerves, gastrin, and serotonin, to mention just a few of the stimuli that can trigger itch. The most common of these is histamine. When the skin is inflamed, as histamine is released, it triggers the itch response. In the elderly, chronic itching can interfere with the quality of life. When caused by organ failure or necessary medications such as medications for pain, it offers a quandary – stop the pain medications and increase pain or suffer with chronic itch. This chapter describes the reflex, itching in the elderly, and therapeutic interventions to reduce itch in the elderly.

Keywords

Itch Pruritus Histamine Itch reflex 

References

  1. 1.
    Beauregard S, Gilchrest BA. A survey of skin problems and skin care regimens in the elderly. Arch Dermatol. 1987;123(12):1638–43.PubMedCrossRefGoogle Scholar
  2. 2.
    Han L, Dong X. Itch mechanisms and circuits. Annu Rev Biophys. 2014;43:331–55.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Zachariae R, et al. Dermatology life quality index: data from Danish inpatients and outpatients. Acta Derm Venereol. 2000;80(4):272–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Jeffry J, Kim S, Chen ZF. Itch signaling in the nervous system. Physiology (Bethesda). 2011;26(4):286–92.CrossRefGoogle Scholar
  5. 5.
    Ward S. Eczema and dry skin in older people: identification and management. Br J Community Nurs. 2005;10(10):453–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Norman RA. Xerosis and pruritus in the elderly: recognition and management. Dermatol Ther. 2003;16(3):254–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Wang H, Yosipovitch G. New insights into the pathophysiology and treatment of chronic itch in patients with end-stage renal disease, chronic liver disease, and lymphoma. Int J Dermatol. 2010;49(1):1–11.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Bernhard JD. Itch and pruritus: what are they, and how should itches be classified? Dermatol Ther. 2005;18(4):288–91.PubMedCrossRefGoogle Scholar
  9. 9.
    Yosipovitch G, Samuel LS. Neuropathic and psychogenic itch. Dermatol Ther. 2008;21(1):32–41.PubMedCrossRefGoogle Scholar
  10. 10.
    Kurban MS, Boueiz A, Kibbi AG. Cutaneous manifestations of chronic kidney disease. Clin Dermatol. 2008;26(3):255–64.PubMedCrossRefGoogle Scholar
  11. 11.
    Ward JR, Bernhard JD. Willan’s itch and other causes of pruritus in the elderly. Int J Dermatol. 2005;44(4):267–73.PubMedCrossRefGoogle Scholar
  12. 12.
    Yosipovitch G, Fleischer A. Itch associated with skin disease: advances in pathophysiology and emerging therapies. Am J Clin Dermatol. 2003;4(9):617–22.PubMedCrossRefGoogle Scholar
  13. 13.
    Yosipovitch G, Greaves MW, Schmelz M. Itch. Lancet. 2003;361(9358):690–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Ramirez-Bermudez J, Espinola-Nadurille M, Loza-Taylor N. Delusional parasitosis in neurological patients. Gen Hosp Psychiatry. 2010;32(3):294–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Kuypers DR. Skin problems in chronic kidney disease. Nat Clin Pract Nephrol. 2009;5(3):157–70.PubMedCrossRefGoogle Scholar
  16. 16.
    Hosogi M, et al. Bradykinin is a potent pruritogen in atopic dermatitis: a switch from pain to itch. Pain. 2006;126(1–3):16–23.PubMedCrossRefGoogle Scholar
  17. 17.
    Ikoma A, et al. The neurobiology of itch. Nat Rev Neurosci. 2006;7(7):535–47.PubMedCrossRefGoogle Scholar
  18. 18.
    Basbaum AI, et al. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–84.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Ringkamp M, et al. A role for nociceptive, myelinated nerve fibers in itch sensation. J Neurosci. 2011;31(42):14841–9.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Andrew D, Craig AD. Spinothalamic lamina I neurons selectively sensitive to histamine: a central neural pathway for itch. Nat Neurosci. 2001;4(1):72–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Patel T, Yosipovitch G. The management of chronic pruritus in the elderly. Skin Therapy Lett. 2010;15(8):5–9.PubMedGoogle Scholar
  22. 22.
    van Os-Medendorp H, et al. Effectiveness of the nursing programme ‘Coping with itch’: a randomized controlled study in adults with chronic pruritic skin disease. Br J Dermatol. 2007;156(6):1235–44.PubMedCrossRefGoogle Scholar
  23. 23.
    Volonte C, Parisi C, Apolloni S. New kid on the block: does histamine get along with inflammation in amyotrophic lateral sclerosis? CNS Neurol Disord Drug Targets. 2015;14:168–75.CrossRefGoogle Scholar
  24. 24.
    Lewis T, Zotterman Y. Vascular reactions of the skin to injury: part VIII. The resistance of the human skin to constant currents, in relation to injury and vascular response. J Physiol. 1927;62(3):280–8.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Simons FE, Simons KJ. Histamine and H1-antihistamines: celebrating a century of progress. J Allergy Clin Immunol. 2011;128(6):1139–50 e4.PubMedCrossRefGoogle Scholar
  26. 26.
    Hasegawa Y, et al. Intractable itch relieved by 4-phenylbutyrate therapy in patients with progressive familial intrahepatic cholestasis type 1. Orphanet J Rare Dis. 2014;9:89.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Broadbent JL. Observations on histamine-induced pruritus and pain. Br J Pharmacol Chemother. 1955;10(2):183–5.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Davidson S, Giesler GJ. The multiple pathways for itch and their interactions with pain. Trends Neurosci. 2010;33(12):550–8.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Kim BM, et al. Histamine-induced Ca(2+) influx via the PLA(2)/lipoxygenase/TRPV1 pathway in rat sensory neurons. Neurosci Lett. 2004;361(1–3):159–62.PubMedCrossRefGoogle Scholar
  30. 30.
    Mobarakeh JI, et al. Role of histamine H(1) receptor in pain perception: a study of the receptor gene knockout mice. Eur J Pharmacol. 2000;391(1–2):81–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Rossbach K, et al. The histamine H receptor as a new target for treatment of canine inflammatory skin diseases. Vet Dermatol. 2009;20(5–6):555–61.PubMedGoogle Scholar
  32. 32.
    Kollmeier A, et al. The histamine H(4) receptor antagonist, JNJ 39758979, is effective in reducing histamine-induced pruritus in a randomized clinical study in healthy subjects. J Pharmacol Exp Ther. 2014;350(1):181–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Ohsawa Y, Hirasawa N. The antagonism of histamine H1 and H4 receptors ameliorates chronic allergic dermatitis via anti-pruritic and anti-inflammatory effects in NC/Nga mice. Allergy. 2012;67(8):1014–22.PubMedCrossRefGoogle Scholar
  34. 34.
    Tey HL, Yosipovitch G. Targeted treatment of pruritus: a look into the future. Br J Dermatol. 2011;165(1):5–17.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Thurmond RL, Gelfand EW, Dunford PJ. The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nat Rev Drug Discov. 2008;7(1):41–53.PubMedCrossRefGoogle Scholar
  36. 36.
    Dong X, et al. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell. 2001;106(5):619–32.PubMedCrossRefGoogle Scholar
  37. 37.
    Lembo PM, et al. Proenkephalin A gene products activate a new family of sensory neuron – specific GPCRs. Nat Neurosci. 2002;5(3):201–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Liu Q, et al. Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell. 2009;139(7):1353–65.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Liu Q, et al. Mechanisms of itch evoked by beta-alanine. J Neurosci. 2012;32(42):14532–7.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Han L, et al. A subpopulation of nociceptors specifically linked to itch. Nat Neurosci. 2013;16(2):174–82.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Shelley WB, Arthur RP. Mucunain, the active pruritogenic proteinase of cowhage. Science. 1955;122(3167):469–70.PubMedCrossRefGoogle Scholar
  42. 42.
    Sun YG, et al. Cellular basis of itch sensation. Science. 2009;325(5947):1531–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Nichols ML, et al. Transmission of chronic nociception by spinal neurons expressing the substance P receptor. Science. 1999;286(5444):1558–61.PubMedCrossRefGoogle Scholar
  44. 44.
    Soh UJ, et al. Signal transduction by protease-activated receptors. Br J Pharmacol. 2010;160(2):191–203.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Zhu WJ, et al. Expression of mRNA for four subtypes of the proteinase-activated receptor in rat dorsal root ganglia. Brain Res. 2005;1041(2):205–11.PubMedCrossRefGoogle Scholar
  46. 46.
    Reddy VB, et al. Cathepsin S elicits itch and signals via protease-activated receptors. J Invest Dermatol. 2010;130(5):1468–70.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Reddy VB, et al. Cowhage-evoked itch is mediated by a novel cysteine protease: a ligand of protease-activated receptors. J Neurosci. 2008;28(17):4331–5.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Ratikan JA, et al. Radiation takes its toll. Cancer Lett. 2015;362:122–30.CrossRefGoogle Scholar
  49. 49.
    Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.PubMedCrossRefGoogle Scholar
  50. 50.
    Fischer H, et al. Mechanism of pathogen-specific TLR4 activation in the mucosa: fimbriae, recognition receptors and adaptor protein selection. Eur J Immunol. 2006;36(2):267–77.PubMedCrossRefGoogle Scholar
  51. 51.
    Matzinger P. An innate sense of danger. Ann N Y Acad Sci. 2002;961:341–2.PubMedCrossRefGoogle Scholar
  52. 52.
    Matzinger P. The danger model: a renewed sense of self. Science. 2002;296(5566):301–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Kim SJ, et al. Analysis of cellular and behavioral responses to imiquimod reveals a unique itch pathway in transient receptor potential vanilloid 1 (TRPV1)-expressing neurons. Proc Natl Acad Sci U S A. 2011;108(8):3371–6.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Menendez D, et al. The toll-like receptor gene family is integrated into human DNA damage and p53 networks. PLoS Genet. 2011;7(3):e1001360.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    van den Ancker W, et al. Targeting toll-like receptor 7/8 enhances uptake of apoptotic leukemic cells by monocyte-derived dendritic cells but interferes with subsequent cytokine-induced maturation. Cancer Immunol Immunother. 2011;60(1):37–47.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Davenport AP, Maguire JJ. Endothelin. Handb Exp Pharmacol. 2006;176(Pt 1):295–329.PubMedCrossRefGoogle Scholar
  57. 57.
    Sin A, et al. The emerging role of endothelin-1 in the pathogenesis of subchondral bone disturbance and osteoarthritis. Osteoarthritis Cartilage. 2015;23(4):516–24.PubMedCrossRefGoogle Scholar
  58. 58.
    Kilickesmez KO, et al. Relationship between serum endothelin-1 level and spontaneous reperfusion in patients with acute myocardial infarction. Coron Artery Dis. 2015;26(1):37–41.PubMedCrossRefGoogle Scholar
  59. 59.
    Fu J, et al. Glomerular endothelial cell injury and cross talk in diabetic kidney disease. Am J Physiol Renal Physiol. 2015;308(4):F287–97.PubMedCrossRefGoogle Scholar
  60. 60.
    Santi D, et al. Therapy of endocrine disease. Effects of chronic use of phosphodiesterase inhibitors on endothelial markers in type 2 diabetes mellitus: a meta-analysis. Eur J Endocrinol. 2015;172(3):R103–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Leask A. Getting to the heart of the matter: new insights into cardiac fibrosis. Circ Res. 2015;116(7):1269–76.PubMedCrossRefGoogle Scholar
  62. 62.
    Katugampola R, Church MK, Clough GF. The neurogenic vasodilator response to endothelin-1: a study in human skin in vivo. Exp Physiol. 2000;85(6):839–46.PubMedCrossRefGoogle Scholar
  63. 63.
    McQueen DS, Noble MA, Bond SM. Endothelin-1 activates ETA receptors to cause reflex scratching in BALB/c mice. Br J Pharmacol. 2007;151(2):278–84.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Liang J, Kawamata T, Ji W. Molecular signaling of pruritus induced by endothelin-1 in mice. Exp Biol Med (Maywood). 2010;235(11):1300–5.CrossRefGoogle Scholar
  65. 65.
    Kido-Nakahara M, et al. Neural peptidase endothelin-converting enzyme 1 regulates endothelin 1-induced pruritus. J Clin Invest. 2014;124(6):2683–95.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Mishra SK, Hoon MA. The cells and circuitry for itch responses in mice. Science. 2013;340(6135):968–71.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Liu XY, et al. B-type natriuretic peptide is neither itch-specific nor functions upstream of the GRP-GRPR signaling pathway. Mol Pain. 2014;10:4.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Petrofsky JS, et al. The interrelationship between air temperature and humidity as applied locally to the skin: the resultant response on skin temperature and blood flow with age differences. Med Sci Monit. 2012;18(4):CR201–8.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Petrofsky J, et al. The effect of moist air on skin blood flow and temperature in subjects with and without diabetes. Diabetes Technol Ther. 2012;14(2):105–16.PubMedCrossRefGoogle Scholar
  70. 70.
    McLellan K, et al. The influence of environmental temperature on the response of the skin to local pressure: the impact of aging and diabetes. Diabetes Technol Ther. 2009;11(12):791–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Petrofsky J. A method of measuring the interaction between skin temperature and humidity on skin vascular endothelial function in people with diabetes. J Med Eng Technol. 2011;35(6–7):330–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Akiyama T, Carstens MI, Carstens E. Enhanced scratching evoked by PAR-2 agonist and 5-HT but not histamine in a mouse model of chronic dry skin itch. Pain. 2010;151(2):378–83.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Akiyama T, Carstens MI, Carstens E. Spontaneous itch in the absence of hyperalgesia in a mouse hindpaw dry skin model. Neurosci Lett. 2010;484(1):62–5.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Yoshioka T, et al. Impact of the Gly573Ser substitution in TRPV3 on the development of allergic and pruritic dermatitis in mice. J Invest Dermatol. 2009;129(3):714–22.PubMedCrossRefGoogle Scholar
  75. 75.
    Sun YG, Chen ZF. A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature. 2007;448(7154):700–3.PubMedCrossRefGoogle Scholar
  76. 76.
    Zhao ZQ, et al. Descending control of itch transmission by the serotonergic system via 5-HT1A-facilitated GRP-GRPR signaling. Neuron. 2014;84(4):821–34.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Schmelz M, et al. Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J Neurophysiol. 2003;89(5):2441–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Akiyama T, Carstens MI, Carstens E. Facial injections of pruritogens and algogens excite partly overlapping populations of primary and second-order trigeminal neurons in mice. J Neurophysiol. 2010;104(5):2442–50.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Sommer C. Serotonin in pain and analgesia: actions in the periphery. Mol Neurobiol. 2004;30(2):117–25.PubMedCrossRefGoogle Scholar
  80. 80.
    Bockaert J, et al. Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res. 2006;326(2):553–72.PubMedCrossRefGoogle Scholar
  81. 81.
    Haruna T, et al. S-777469, a novel cannabinoid type 2 receptor agonist, suppresses itch-associated scratching behavior in rodents through inhibition of itch signal transmission. Pharmacology. 2015;95(1–2):95–103.PubMedCrossRefGoogle Scholar
  82. 82.
    Dillon SR, et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol. 2004;5(7):752–60.PubMedCrossRefGoogle Scholar
  83. 83.
    Neis MM, et al. Enhanced expression levels of IL-31 correlate with IL-4 and IL-13 in atopic and allergic contact dermatitis. J Allergy Clin Immunol. 2006;118(4):930–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Szegedi K, et al. Increased frequencies of IL-31-producing T cells are found in chronic atopic dermatitis skin. Exp Dermatol. 2012;21(6):431–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Takaoka A, et al. Expression of IL-31 gene transcripts in NC/Nga mice with atopic dermatitis. Eur J Pharmacol. 2005;516(2):180–1.PubMedCrossRefGoogle Scholar
  86. 86.
    Yosipovitch G, Papoiu AD. What causes itch in atopic dermatitis? Curr Allergy Asthma Rep. 2008;8(4):306–11.PubMedCrossRefGoogle Scholar
  87. 87.
    Toyoda M, et al. Nerve growth factor and substance P are useful plasma markers of disease activity in atopic dermatitis. Br J Dermatol. 2002;147(1):71–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Haas S, et al. Low density of sympathetic nerve fibers relative to substance P-positive nerve fibers in lesional skin of chronic pruritus and prurigo nodularis. J Dermatol Sci. 2010;58(3):193–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Ohmura T, et al. Involvement of substance P in scratching behaviour in an atopic dermatitis model. Eur J Pharmacol. 2004;491(2–3):191–4.PubMedCrossRefGoogle Scholar
  90. 90.
    Sowunmi A, Walker O, Salako LA. Pruritus and antimalarial drugs in Africans. Lancet. 1989;2(8656):213.PubMedCrossRefGoogle Scholar
  91. 91.
    Guan Y, et al. Mas-related G-protein-coupled receptors inhibit pathological pain in mice. Proc Natl Acad Sci U S A. 2010;107(36):15933–8.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Fleischer Jr AB. Pruritus in the elderly: management by senior dermatologists. J Am Acad Dermatol. 1993;28(4):603–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Duque MI, et al. Uremic pruritus is associated with higher kt/V and serum calcium concentration. Clin Nephrol. 2006;66(3):184–91.PubMedCrossRefGoogle Scholar
  94. 94.
    Patel TS, Freedman BI, Yosipovitch G. An update on pruritus associated with CKD. Am J Kidney Dis. 2007;50(1):11–20.PubMedCrossRefGoogle Scholar
  95. 95.
    Ward L, Wright E, McMahon SB. A comparison of the effects of noxious and innocuous counter stimuli on experimentally induced itch and pain. Pain. 1996;64(1):129–38.PubMedCrossRefGoogle Scholar
  96. 96.
    Yosipovitch G, et al. Scratching and noxious heat stimuli inhibit itch in humans: a psychophysical study. Br J Dermatol. 2007;156(4):629–34.PubMedCrossRefGoogle Scholar
  97. 97.
    van Os-Medendorp H, et al. Prevalence and predictors of psychosocial morbidity in patients with chronic pruritic skin diseases. J Eur Acad Dermatol Venereol. 2006;20(7):810–7.PubMedGoogle Scholar
  98. 98.
    Weiner AA, Sheehan DV. Etiology of dental anxiety: psychological trauma or CNS chemical imbalance? Gen Dent. 1990;38(1):39–43.PubMedGoogle Scholar
  99. 99.
    Harlow D, et al. Impaired quality of life of adults with skin disease in primary care. Br J Dermatol. 2000;143(5):979–82.PubMedCrossRefGoogle Scholar
  100. 100.
    Yosipovitch G, et al. The prevalence and clinical characteristics of pruritus among patients with extensive psoriasis. Br J Dermatol. 2000;143(5):969–73.PubMedCrossRefGoogle Scholar
  101. 101.
    Petrofsky JS. Resting blood flow in the skin: does it exist, and what is the influence of temperature, aging, and diabetes? J Diabetes Sci Technol. 2012;6(3):674–85.PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Petrofsky JS, et al. The effect of body fat, aging, and diabetes on vertical and shear pressure in and under a waist belt and its effect on skin blood flow. Diabetes Technol Ther. 2010;12(2):153–60.PubMedCrossRefGoogle Scholar
  103. 103.
    Petrofsky J, Lee S. The effects of type 2 diabetes and aging on vascular endothelial and autonomic function. Med Sci Monit. 2005;11(6):CR247–54.PubMedGoogle Scholar
  104. 104.
    Petrofsky J, et al. The interrelationship between locally applied heat, ageing and skin blood flow on heat transfer into and from the skin. J Med Eng Technol. 2011;35(5):262–74.PubMedCrossRefGoogle Scholar
  105. 105.
    Petrofsky JS, et al. Sweat production during global heating and during isometric exercise in people with diabetes. Med Sci Monit. 2005;11(11):CR515–21.PubMedGoogle Scholar
  106. 106.
    Gubbels Bupp MR. Sex, the aging immune system, and chronic disease. Cell Immunol. 2015;294(2):102–10.PubMedCrossRefGoogle Scholar
  107. 107.
    Bonomini F, Rodella LF, Rezzani R. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis. 2015;6(2):109–20.PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Edd SN, Giori NJ, Andriacchi TP. The role of inflammation in the initiation of osteoarthritis after meniscal damage. J Biomech. 2015;48:1420–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Bessueille L, Magne D. Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes. Cell Mol Life Sci. 2015;72:2475–89.PubMedCrossRefGoogle Scholar
  110. 110.
    Stangier U, Ehlers A, Gieler U. Predicting long-term outcome in group treatment of atopic dermatitis. Psychother Psychosom. 2004;73(5):293–301.PubMedCrossRefGoogle Scholar
  111. 111.
    Dykes PJ, Marks R. An appraisal of the methods used in the assessment of atrophy from topical corticosteroids. Br J Dermatol. 1979;101(5):599–609.PubMedCrossRefGoogle Scholar
  112. 112.
    Stander S, et al. Treatment of pruritic diseases with topical calcineurin inhibitors. Ther Clin Risk Manag. 2006;2(2):213–8.PubMedCentralPubMedCrossRefGoogle Scholar
  113. 113.
    Patel T, Ishiuji Y, Yosipovitch G. Menthol: a refreshing look at this ancient compound. J Am Acad Dermatol. 2007;57(5):873–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Papoiu AD, Yosipovitch G. Topical capsaicin. The fire of a ‘hot’ medicine is reignited. Expert Opin Pharmacother. 2010;11(8):1359–71.PubMedCrossRefGoogle Scholar
  115. 115.
    Wood GJ, et al. An insatiable itch. J Pain. 2009;10(8):792–7.PubMedCrossRefGoogle Scholar
  116. 116.
    Imamachi N, et al. TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms. Proc Natl Acad Sci U S A. 2009;106(27):11330–5.PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Freitag G, Hoppner T. Results of a postmarketing drug monitoring survey with a polidocanol-urea preparation for dry, itching skin. Curr Med Res Opin. 1997;13(9):529–37.PubMedCrossRefGoogle Scholar
  118. 118.
    Yosipovitch G, et al. The effect of topically applied aspirin on localized circumscribed neurodermatitis. J Am Acad Dermatol. 2001;45(6):910–3.PubMedCrossRefGoogle Scholar
  119. 119.
    Andoh T, et al. Thromboxane A2 induces itch-associated responses through TP receptors in the skin in mice. J Invest Dermatol. 2007;127(8):2042–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Szepietowski JC, Szepietowski T, Reich A. Efficacy and tolerance of the cream containing structured physiological lipids with endocannabinoids in the treatment of uremic pruritus: a preliminary study. Acta Dermatovenerol Croat. 2005;13(2):97–103.PubMedGoogle Scholar
  121. 121.
    Bergasa NV, et al. Oral nalmefene therapy reduces scratching activity due to the pruritus of cholestasis: a controlled study. J Am Acad Dermatol. 1999;41(3 Pt 1):431–4.PubMedCrossRefGoogle Scholar
  122. 122.
    Davis MP, et al. Mirtazapine for pruritus. J Pain Symptom Manage. 2003;25(3):288–91.PubMedCrossRefGoogle Scholar
  123. 123.
    Stander S, et al. Treatment of chronic pruritus with the selective serotonin re-uptake inhibitors paroxetine and fluvoxamine: results of an open-labelled, two-arm proof-of-concept study. Acta Derm Venereol. 2009;89(1):45–51.PubMedCrossRefGoogle Scholar
  124. 124.
    Yosipovitch G, Carstens E, McGlone F. Chronic itch and chronic pain: analogous mechanisms. Pain. 2007;131(1–2):4–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Hundley JL, Yosipovitch G. Mirtazapine for reducing nocturnal itch in patients with chronic pruritus: a pilot study. J Am Acad Dermatol. 2004;50(6):889–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Allied HealthLoma Linda UniversityLoma LindaUSA

Personalised recommendations