Skip to main content

The Evolution of Speech and Language

  • Living reference work entry
  • First Online:
  • 1010 Accesses

Abstract

Human speech, language, and cognition derive from anatomy and neural mechanisms that have been shaped by the Darwinian process of natural selection acting on variation but that have roots present in other living species. Language did not suddenly arise 50,000–100,000 years ago through a mutation that yielded an innate “faculty of language ” nor does the human brain include an organ devoted to language and language alone. Broca’s area is not the center of language. Neural circuits linking local activity in different neural structures regulate complex behaviors. Neural circuits that were present in early mammal-like reptiles play a part in regulating laryngeal phonation, conveying both referential information and emotion. Speech plays a central role, enabling transmission of information at a rate that exceeds the auditory fusion frequency. The unique human tongue enhances the robustness of speech, but Neanderthals and other archaic hominins whose neck and skull proportions preclude their having an adult-like human tongue nevertheless could talk. Comparative studies of present-day apes suggest that hominin “protolanguage” lacking syntax never existed. The neural bases of human language are not domain-specific – in other words, they are not devoted to language alone. Mutations on the FOXP2 transcriptional gene shared by humans, Neanderthals, and at least one other archaic species enhanced synaptic plasticity in cortical–basal ganglia circuits that are implicated in motor behavior, cognitive flexibility, language, and associative learning. A selective sweep occurred about 200,000 years ago on a unique human version of this gene. Other transcriptional genes appear to be implicated in enhancing cortical–basal ganglia and other neural circuits.

This is a preview of subscription content, log in via an institution.

References

  • Alemseged Z, Spoor F, Kimbel WH et al (2006) A juvenile early hominin skeleton from Dikika, Ethiopia. Nature 443:296–301

    CAS  PubMed  Google Scholar 

  • Alexander GE, DeLong FH, Strick PL (1986) Parallel organization of segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 9:357–381

    CAS  PubMed  Google Scholar 

  • Alexander MP, Naeser MA, Palumbo CL (1987) Correlations of subcortical CT lesion sites and aphasia profiles. Brain 110:961–991

    PubMed  Google Scholar 

  • Ardran GM, Kemp FH (1972) A functional assessment of relative tongue size. Am J Roentgen 114:282–288

    CAS  PubMed  Google Scholar 

  • Arensburg B (1994) Middle Paleolithic speech capabilities: a response to Dr. Lieberman. Am J Phys Anthropol 94:279–280

    Google Scholar 

  • Arensburg B, Tillier AM, Vandermeersch B et al (1989) A Middle Paleolithic human hyoid bone. Nature 338:758–760

    CAS  PubMed  Google Scholar 

  • Arensburg B, Schepartz LA, Tillier A-M et al (1990) A reappraisal of the anatomical basis for speech in Middle Paleolithic hominids. Am J Phys Anthropol 83:137–146

    CAS  PubMed  Google Scholar 

  • Armstrong LE, Ward IC (1926) Handbook of English intonation. Teubner, Leipzig

    Google Scholar 

  • Arsuaga JL, Martinez I, Gracia A et al (1997) The Sima de los Huesos crania (Sierra de Atapuerca, Spain: a comparative study. J Hum Evol 33:219–281

    CAS  PubMed  Google Scholar 

  • Assad WF, Eskander EN (2011) Encoding of both positive and negative reward prediction errors by neurons of the primate lateral prefrontal cortex and caudate nucleus. J Neurosci 31:17772–17787

    Google Scholar 

  • Badre D, Wagner AD (2006) Computational and neurobiological mechanisms underlying cognitive flexibility. Proc Natl Acad Sci U S A 103:7186–7190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bar-Gad I, Bergman H (2001) Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr Opin Neurobiol 11:689–695

    CAS  PubMed  Google Scholar 

  • Bench RW (1963) Growth of the cervical vertebrae as related to tongue, face and denture behavior. Am J Orthod 49:183–214

    Google Scholar 

  • Bibby RE, Preston CB (1981) The hyoid triangle. Am J Orthod 80:92–97

    CAS  PubMed  Google Scholar 

  • Bickerton D (1990) Language and species. University of Chicago Press, Chicago

    Google Scholar 

  • Bischoff JL, Williams RW, Rosenbauer RJ et al (2007) High-resolution U-series dates from the Sima de los Huesos hominids yields 600±‰/66 kyrs: implications for the evolution of the early Neanderthal lineage. J Arch Sci 34:763–770

    Google Scholar 

  • Boë L-J, Heim J-L, Honda K et al (2002) The potential Neanderthal vowel space was as large as that of modern humans. J Phon 30:465–484

    Google Scholar 

  • Bond ZS (1976) Identification of vowels excerpted from neutral nasal contexts. J Acoust Soc Am 59:1229–1232

    CAS  PubMed  Google Scholar 

  • Bouhuys A (1974) Breathing. Grune and Stratton, New York

    Google Scholar 

  • Brainard MS, Doupe AJ (2000) Interruption of a basal-ganglia-forebrain circuit prevents plasticity of learned vocalizations. Nature 404:762–766

    CAS  PubMed  Google Scholar 

  • Broca P (1861) Nouvelle observation d’aphémie produite par une lésion de la moitié postérieure des deuxième et troisième circonvolutions frontales. Bull Soc Anat 6:398–407, 2nd ser

    Google Scholar 

  • Brodmann K (1908) Beiträge zur histologischen Lokalisation der Grosshirnrinde. VII. Mitteilung: Die cytoarchitektonische Cortexgleiderung der Halbaffen (Lemuriden). J Psychol Neurol 10:287–334

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Groshirnrinde in iheren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig

    Google Scholar 

  • Brodmann K (1912) Ergebnisse uber die vergleichende histologische Lokalisation der Grosshirnrinde mit besonderer Berucksichtigung des Stirnhirns. Anat Anz Suppl 41:157–216

    Google Scholar 

  • Browne J (1995) Charles Darwin voyaging. Princeton University Press, Princeton

    Google Scholar 

  • Budil I (1994) Functional reconstruction of the supralaryngeal vocal tract of fossil human. Hum Evol 9:35–52

    Google Scholar 

  • Capasso L, Michetti E, D’Anastasio R (2008) A Homo erectus hyoid bone: possible implications for the origin of the human capability for speech. Coll Anthropol 4:1007–1011

    Google Scholar 

  • Carew TJ, Waters ET, Kandel ER (1981) Associative learning in aplysia: cellular correlates supporting a conditioned fear hypothesis. Science 211:501–503

    CAS  PubMed  Google Scholar 

  • Carlisle RC, Siegel MI (1974) Some problems in the interpretation of Neanderthal speech capabilities: a reply to Lieberman. Am Anthropol 76:319–322

    Google Scholar 

  • Carlisle RC, Siegel MI (1978) Additional comments on problems in the interpretation of Neanderthal speech capabilities. Am Anthropol 80:367–372

    Google Scholar 

  • Carlsöö S, Leijon G (1960) A radiographic study of the position of the hyo-laryngeal complex in relation to the skull and cervical column in man. Trans R Sch Dent Umea (Stockh) 513–535

    Google Scholar 

  • Carre R, Lindblom B, MacNeilage P (1995) Acoustic factors in the evolution of the human vocal tract. CR Acad Sci Par t320(Ser IIb):471–476

    Google Scholar 

  • Cheyney DL, Seyfarth RM (1990) How monkeys see the world: inside the mind of another species. University of Chicago Press, Chicago

    Google Scholar 

  • Chomsky N (1972) Language and mind. Harcourt Brace Jovanovich, New York

    Google Scholar 

  • Chomsky N (1976) On the nature of language. In: Steklis HB, Harnad SR, Lancaster J (eds) Origins and evolution of language and speech. New York Academy of Sciences, New York

    Google Scholar 

  • Chomsky N (2012) The science of language. Cambridge University Press, Cambridge

    Google Scholar 

  • Crelin ES (1969) Anatomy of the newborn: an atlas. Lea and Febiger, Philadelphia

    Google Scholar 

  • Crelin ES (1973) The Steinheim skull: a linguistic link. Yale Sci 48:10–14

    Google Scholar 

  • Cummings JL (1993) Frontal-subcortical circuits and human behavior. Arch Neurol 50:873–880

    CAS  PubMed  Google Scholar 

  • Curtiss S (1977) Genie: a psycholinguistic study of a modern-day “wild child”. Academic, New York

    Google Scholar 

  • Darwin C (1859/1964) On the origin of species. Harvard University Press, Cambridge, MA

    Google Scholar 

  • De Boer B (2009) Acoustic analysis of primate air sacs and their effect on vocalization. J Acoust Soc Am 126:3329–3343

    PubMed  Google Scholar 

  • De Boer B (2010) Modeling vocal anatomy’s significant effect on speech. J Evol Psychol 8:351–366

    Google Scholar 

  • De Boer B (2012) Loss of air sacs improved hominin speech abilities. J Hum Evol 62:1–6

    PubMed  Google Scholar 

  • De Boer B, Fitch WT (2010) Computer models of vocal tract evolution: an overview and critique. Adapt Behav 18:36–47

    Google Scholar 

  • DeGusta D, Gilbert WH, Turner SP (1999) Hypoglossal canal size and hominid speech. Proc Natl Acad Sci U S A 16:1800–1804

    Google Scholar 

  • Devlin JT, Poldark RA (2007) In praise of tedious anatomy. Neuroimage 37:1033–1058

    PubMed Central  PubMed  Google Scholar 

  • Dronkers NF, Plaisant O, Iba-Zizen MT et al (2007) Paul Broca’s historic cases: high resolution MR imaging of the brains of Leborgne and Lelong. Brain 130:1432–1441

    CAS  PubMed  Google Scholar 

  • DuBrul EL, Reed CA (1960) Skeletal evidence of speech? Am J Phys Anthropol 18:153–156

    CAS  PubMed  Google Scholar 

  • Duchin L (1990) The evolution of articulate speech: comparative anatomy of the oral cavity in Pan and Homo. J Hum Evol 19:687–697

    Google Scholar 

  • Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. TINS 10:475–483

    Google Scholar 

  • Enard W, Przeworski M, Fisher SE et al (2002) Molecular evolution of FOXP2, a gene involved in speech and language. Nature 41:869–872

    Google Scholar 

  • Enard W, Gehre S, Hammerschmidt K et al (2009) A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137:961–971

    CAS  PubMed  Google Scholar 

  • Everett DL (2012) Language: the cultural tool. Pantheon, New York

    Google Scholar 

  • Falk D (1975) Comparative anatomy of the larynx in man and the chimpanzee: implications for language in Neanderthal. Am J Phys Anthropol 43:123–132

    CAS  PubMed  Google Scholar 

  • Fernald AT, Taeschner J, Dunn J et al (1989) A cross-language study of prosodic modifications in mothers’ and fathers’ speech to preverbal infants. J Child Lang 16:477–501

    CAS  PubMed  Google Scholar 

  • Fisher SE, Vargha-Khadem F, Watkins KE et al (1998) Localization of a gene implicated in a severe speech and language disorder. Nat Genet 18:168–170

    CAS  PubMed  Google Scholar 

  • Fitch WT (2000) Skull dimensions in relation to body size in nonhuman mammals: the causal bases for acoustic allometry. Zool 103:40–58

    Google Scholar 

  • Fitch WT (2010) The evolution of language. Cambridge University Press, New York

    Google Scholar 

  • Flowers KA, Robertson C (1985) The effects of Parkinson’s disease on the ability to maintain a mental set. J Neurol Neurosurg Psych 48:517–529

    CAS  Google Scholar 

  • Frayer DW, Nicolay CW (2000) Fossil evidence for the origin of speech sounds. In: Wallin NL, Merker B, Brown S (eds) The origins of music. MIT Press, Cambridge, MA

    Google Scholar 

  • Gardner RA, Gardner BT (1969) Teaching sign language to a chimpanzee. Science 165:664–672

    CAS  PubMed  Google Scholar 

  • Goldstein K (1948) Language and language disturbances. Grune and Stratton, New York

    Google Scholar 

  • Granat J, Boë L-J, Badin P et al (2007) Prediction of the ability of reconstituted vocal tracts of fossils to produce speech. In: ICPhS XVI, pp 381–384. www.icphs2007.de

  • Graybiel AM (1995) Building action repertoires: memory and learning functions of the basal ganglia. Curr Opin Neurobiol 5:733–741

    CAS  PubMed  Google Scholar 

  • Greenberg J (1963) Universals of language. MIT Press, Cambridge, MA

    Google Scholar 

  • Gunz P, Neubauer S, Maureille B et al (2010) Brain development after birth differs between Neanderthals and modern humans. Curr Biol 20:R921–R922

    CAS  PubMed  Google Scholar 

  • Gunz P, Neubauer S, Golovanova L et al (2012) A uniquely modern human pattern of endocranial development: insights from a new cranial reconstruction of the Neandertal newborn from Mezmaiskaya. J Hum Evol 62:300–313

    PubMed  Google Scholar 

  • Harrington DL, Haaland KY (1991) Sequencing in Parkinson’s disease: abnormalities in programming and controlling movement. Brain 114:99–115

    PubMed  Google Scholar 

  • Hauser MD, Chomsky N, Fitch WT (2002) The faculty of language: what is it, who has it, how did it evolve? Science 298:1569–1579

    CAS  PubMed  Google Scholar 

  • Hebb DO (1949) The organization of behavior: a neurophysiological theory. Wiley, New York

    Google Scholar 

  • Henke W (1966) Dynamic articulatory model of speech production using computer simulation. Ph.D. diss, MIT

    Google Scholar 

  • Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:1–11

    Google Scholar 

  • Hershkovitz I, Speirs MS, Frayer D et al (1995) Ohalo II H2: a 19,000-year-old skeleton from a water-logged site at the Sea of Galilee, Israel. Am J Phys Anthropol 96:215–234

    CAS  PubMed  Google Scholar 

  • Hewes GW (1973) Primate communication and the gestural origin of language. Curr Anthropol 14:5–24

    Google Scholar 

  • Hewitt G, MacLarnon A, Jones KE (2000) The functions of laryngeal air sacs in primates: a new hypothesis. Folia Primatol 73:70–94

    Google Scholar 

  • Hillenbrand J, Getty LA, Clark MJ et al (1995) Acoustic characteristics of American English vowels. J Acoust Soc Am 97:3099–3111

    CAS  PubMed  Google Scholar 

  • Hooton EA (1946) Up from the Ape, 2nd edn. Macmillan, New York

    Google Scholar 

  • Houghton P (1993) Neandertal supralaryngeal vocal tract. Am J Phys Anthropol 90:139–146

    CAS  PubMed  Google Scholar 

  • Iwatsubo T, Kuzuhara S, Kanemitsu MD et al (1990) Corticofugal projections to the motor nuclei of the brainstem and spinal cord in humans. Neurology 140:309–312

    Google Scholar 

  • Jellinger K (1990) New developments in the pathology of Parkinson’s disease. In: Streifler MB, Korczyn AD, Melamed E et al (eds) Advances in neurology, vol 53, Parkinson’s disease: anatomy, pathology, and therapy. Raven, New York

    Google Scholar 

  • Jerison HJ (1973) Evolution of the brain and intelligence. Academic, New York

    Google Scholar 

  • Jin X, Costa RM (2010) Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature 466:457–462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joshua M, Adler A, Mitelman R et al (2008) Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J Neurosci 28:11673–11684

    CAS  PubMed  Google Scholar 

  • Jurgens U (2002) Neural pathways underlying vocal control. Neurosci Biobehav Rev 26:235–258

    PubMed  Google Scholar 

  • Kaminski J, Call J, Fischer J (2004) Word learning in a domestic dog: evidence for “fast mapping”. Science 304:1682–1683

    CAS  PubMed  Google Scholar 

  • Kean MR, Houghton P (1982) The Polynesian head: growth and form. J Anat 135:423–435

    CAS  PubMed Central  PubMed  Google Scholar 

  • King EW (1952) A roentgenographic study of pharyngeal growth. Angle Orthod 22:23–37

    Google Scholar 

  • Kondoh M (2010) Linking learning adaptation to trophic interactions: a brain size-based approach. Funct Ecol 24:35–43

    Google Scholar 

  • Konopka G, Bomar JM, Winden K et al (2009) Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature 462:213–217

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koppel HJ, Kendrick GS, Moreland JE (1968) The vertebral level of the arytenoid cartilages. Anat Rec 160:583–586

    CAS  PubMed  Google Scholar 

  • Kotz SA, Frisch S, von Cramen DY et al (2003) Syntactic language processing: ERP lesion data on the role of the basal ganglia. J Int Neuropsychol Soc 9:1053–1060

    PubMed  Google Scholar 

  • Kuypers H (1958) Corticobulbar connections to the pons and lower brainstem in man. Brain 81:364–388

    CAS  PubMed  Google Scholar 

  • Lai CS, Gerrelli D, Monaco AP et al (2003) FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain 126:2455–2462

    PubMed  Google Scholar 

  • Laitman JT, Crelin ES (1976) Postnatal development of the basicranium and vocal tract region in man. In: Bosma JT (ed) Development of the basicranium. National Institutes of Health, Bethesda

    Google Scholar 

  • Laitman JT, Heimbuch RC (1982) The basicranium of Plio-Pleistocene hominids as an indicator of their upper respiratory systems. Am J Phys Anthropol 59:323–343

    CAS  PubMed  Google Scholar 

  • Laitman JT, Heimbuch RC, Crelin ES (1978) Developmental change in a basicranial line and its relationship to the upper respiratory system in primates. Am J Anat 152:467–482

    CAS  PubMed  Google Scholar 

  • Laitman JT, Heimbuch RC, Crelin ES (1979) The basicranium of fossil hominids as an indicator of their upper respiratory systems. Am J Phys Anthropol 51:15–34

    Google Scholar 

  • Lange KW, Robbins TW, Marsden CD et al (1992) L-dopa withdrawal in Parkinson’s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacology (Berl) 107:394–404

    CAS  Google Scholar 

  • Lartet E (1868) De quelques cas de progression organique vérifiables dans la succession des temps, géologiques sur des mammifères de même famille et de même genre. Comp Rendus Acad Sci Par 66:1119–1122

    Google Scholar 

  • Lehéricy S, Ducros M, Van de Moortele PF et al (2004) Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol 55:522–527

    PubMed  Google Scholar 

  • Liberman AM, Cooper FS, Shankweiler DP et al (1967) Perception of the speech code. Psychol Rev 74:431–461

    CAS  PubMed  Google Scholar 

  • Lieberman P (1967) Intonation, perception and language. MIT Press, Cambridge, MA

    Google Scholar 

  • Lieberman P (1993) On the Kebara KMH 2 hyoid and Neanderthal speech. Curr Anthropol 34:172–175

    Google Scholar 

  • Lieberman P (1994) Hyoid bone position and speech: reply to Dr Arensburg, et al. (1990). Am J Phys Anthropol 94:275–278

    CAS  PubMed  Google Scholar 

  • Lieberman P (2000) Human language and our reptilian brain: the subcortical bases of speech, syntax, and thought. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Lieberman P (2002) On the nature and evolution of the neural bases of human language. Yearb Phys Anthropol 45:36–62

    Google Scholar 

  • Lieberman P (2006) Toward an evolutionary biology of language. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Lieberman P (2007) The evolution of human speech: its anatomical and neural bases. Curr Anthropol 48:39–66

    Google Scholar 

  • Lieberman DE (2008) Speculations about the selective basis for modern human craniofacial form. Evol Anthropol 17:55–68

    Google Scholar 

  • Lieberman P (2009) FOXP2 and human cognition. Cell 137:800–802

    CAS  PubMed  Google Scholar 

  • Lieberman DE (2011) The evolution of the human head. Harvard University Press, Camridge, MA

    Google Scholar 

  • Lieberman P (2012) Vocal tract anatomy and the neural bases of talking. J Phon 40:608–622

    Google Scholar 

  • Lieberman P (2013) The unpredictable species: what makes humans unique. Princeton University Press, Princeton

    Google Scholar 

  • Lieberman P, Crelin ES (1971) On the speech of Neanderthal man. Linguistics Inq 2:203–222

    Google Scholar 

  • Lieberman DE, McCarthy RC (1999) The ontogeny of cranial base angulation in humans and Chimpanzees and its implications for reconstructing pharyngeal dimensions. J Hum Evol 36:487–517

    CAS  PubMed  Google Scholar 

  • Lieberman P, McCarthy RC (2007) Tracking the evolution of language and speech. Expedition 49:15–20

    Google Scholar 

  • Lieberman P, Klatt DH, Wilson WH (1969) Vocal tract limitations on the vowel repertoires of rhesus monkey and other nonhuman primates. Science 164:1185–1187

    CAS  PubMed  Google Scholar 

  • Lieberman P, Crelin ES, Klatt DH (1972) Phonetic ability and related anatomy of the newborn, adult human, Neanderthal man, and the Chimpanzee. Am Anthropol 74:287–307

    Google Scholar 

  • Lieberman P, Kako ET, Friedman J et al (1992) Speech production, syntax comprehension, and cognitive deficits in Parkinson’s disease. Brain Lang 43:169–189

    CAS  PubMed  Google Scholar 

  • Lieberman DE, McCarthy RC, Hiiemae KM et al (2001) Ontogeny of larynx and hyoid descent in humans: implications for deglutition and vocalization. Arch Oral Biol 46:117–128

    CAS  PubMed  Google Scholar 

  • Lieberman DE, McBratney BM, Krovitz G (2002) The evolution and development of cranial form in Homo sapiens. Proc Natl Acad Sci U S A 99:1134–1139

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacLarnon AM, Hewitt GP (2004) Increased breathing control: another factor in the evolution of human language. Evol Anthropol 13:181–197

    Google Scholar 

  • MacLean PD, Newman JD (1988) Role of midline frontolimbic cortex in the production of the isolation call of Squirrel monkeys. Brain Res 450:111–123

    CAS  PubMed  Google Scholar 

  • Maricic T, Günther V, Georgiev O et al (2013) A recent evolutionary change affects a regulatory element in the human FOXP2 gene. Mol Biol Evol 25:1257–1259

    Google Scholar 

  • Marsden CD, Obeso JA (1994) The functions of the basal ganglia and the paradox of sterotaxic surgery in Parkinson’s disease. Brain 117:877–897

    PubMed  Google Scholar 

  • Martínez I, Arsuaga JL, Quam R et al (2008) Human hyoid bones from the middle Pleistocene site of the Sima de los Huesos (Sierra de Atapuerca, Spain). J Hum Evol 54:118–124

    PubMed  Google Scholar 

  • McCarthy RC, Strait DS, Yates FW et al (in preparation) Origin of fully modern human speech capabilities

    Google Scholar 

  • McCown TD, Keith A (1939) The stone age of Mount Carmel. The fossil human remains from the Levalloiso-Mousterian, vol II. Oxford University Press, Oxford

    Google Scholar 

  • McElligott AG, Birrer M, Vannoni E (2006) Retraction of the mobile descended larynx during groaning enables fallow bucks (Dama dama) to lower their formant frequencies. J Zool 270:340–345

    Google Scholar 

  • Miller EK, Wallis JD (2009) Executive function and higher order cognition: definition and neural substrates. In: Squire LR (ed) Encyclopedia of, neuroscience, vol 4. Springer, New York

    Google Scholar 

  • Mirenowicz J, Schultz W (1996) Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379:449–451

    CAS  PubMed  Google Scholar 

  • Mithen S (2005) The singing Neanderthals; the origins of music, language, mind and body. Weidenfeld and Nicolson, London

    Google Scholar 

  • Monchi O, Petrides M, Petre V et al (2001) Wisconsin card sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J Neurosci 21:7739–7741

    Google Scholar 

  • Monchi O, Petrides M, Strafella AP et al (2006a) Functional role of the basal ganglia in the planning and execution of actions. Ann Neurol 59:257–264

    PubMed  Google Scholar 

  • Monchi O, Ko JH, Strafella AP (2006b) Striatal dopamine release during performance of executive function: A [11C] raclopride PET study. Neuroimage 33:907–912

    PubMed Central  PubMed  Google Scholar 

  • Monchi O, Petrides M, Mejia-Constain B et al (2007) Cortical activity in Parkinson disease during executive processing depends on striatal involvement. Brain 130:233–244

    PubMed Central  PubMed  Google Scholar 

  • Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Google Scholar 

  • Muller J (1848) The physiology of the senses, voice and muscular motion with the mental faculties (trans: Baly W). Walton and Maberly, London

    Google Scholar 

  • Nauta WJH, Gygax PA (1954) Silver impregnation of degenerating axons in the central nervous system: a modified technic. Stain Technol 29:91–93

    CAS  PubMed  Google Scholar 

  • Nearey T (1978) Phonetic features for vowels. Indiana University Linguistics Club, Bloomington

    Google Scholar 

  • Negus VE (1949) The comparative anatomy and physiology of the larynx. Hafner, New York

    Google Scholar 

  • Newman JD (1985) The infant cry of primates: an evolutionary perspective. In: Lester BM, Zachariah Boukydis CF (eds) Infant crying: theoretical and research perspectives. Plenum, New York

    Google Scholar 

  • Nishimura T (2003) Comparative morphology of the hyo-laryngeal complex in anthropoids: two steps in the evolution of the descent of the larynx. Primates 44:41–49

    PubMed  Google Scholar 

  • Nishimura T, Mikami A, Suzuki J et al (2003) Descent of the larynx in chimpanzee infants. Proc Natl Acad Sci U S A 100:6930–6933

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nishimura T, Mikami A, Suzuki J, Matsuzawa T (2006) Descent of the hyoid in Chimpanzees: evolution of face flattening and speech. J Hum Evol 51:244–254

    PubMed  Google Scholar 

  • Nishimura T, Oishi T, Suzuki J et al (2008) Development of the supralaryngeal vocal tract in Japanese macaques: implications for the evolution of the descent of the larynx. Am J Phys Anthropol 135:182–194

    PubMed  Google Scholar 

  • Perkell JS (1969) Physiology of speech production: results and implications of a quantitative cineradiographic study. MIT Press, Cambridge, MA

    Google Scholar 

  • Peterson GE, Barney HL (1952) Control methods used in a study of the vowels. J Acoust Soc Am 24:175–184

    Google Scholar 

  • Petrides M (2005) Lateral prefrontal cortex: architectonic and functional organization. Phil Trans R Soc Lond B 360:781–795

    Google Scholar 

  • Pickett ER, Kuniholm E, Protopapas A et al (1998) Selective speech motor, syntax and cognitive deficits associated with bilateral damage to the putamen and the head of the caudate nucleus: a case study. Neuropsychology 36:173–188

    CAS  Google Scholar 

  • Pike KE (1945) The intonation of American English. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Pinker S (1998) How the mind works. Norton, New York

    Google Scholar 

  • Postle BR (2006) Working memory as an emergent property of the mind and brain. Neuroscience 139:23–38

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reimers-Kipping S, Hevers S, Pääbo S et al (2011) Humanized Foxp2 specifically affects cortico-basal ganglia circuits. Neuroscience 175:75–84

    CAS  PubMed  Google Scholar 

  • Roche AF, Barkla DH (1965) The level of the larynx during childhood. Ann Otol Rhinol Laryngol 74:645–654

    CAS  PubMed  Google Scholar 

  • Rosas A, Martínez-Maza C, Bastir M et al (2006) Paleobiology and comparative morphology of a late Neandertal sample from El Sidrón, Asturias, Spain. Proc Natl Acad Sci USA 103:19266–19271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanes JN, Donoghue JP, Thangaraj V et al (1999) Shared neural substrates controlling hand movements in human motor cortex. Science 268:1775–1777

    Google Scholar 

  • Savage-Rumbaugh S, Rumbaugh D, McDonald K (1985) Language learning in two species of Apes. Neurosci Biobehav Rev 9:653–665

    CAS  PubMed  Google Scholar 

  • Schulz GM, Varga M, Jeffires K et al (2005) Functional neuroanatomy of human vocalization: an H2 15O PET study. Cereb Cortex 15:1835–1847

    CAS  PubMed  Google Scholar 

  • Semendeferi K, Damasio H, Frank R et al (1997) The evolution of the frontal lobes: a volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and Ape brains. J Hum Evol 32:375–378

    CAS  PubMed  Google Scholar 

  • Semendeferi K, Lu A, Schenker N et al (2002) Humans and great apes share a large frontal cortex. Nat Neurosci 5:272–276

    CAS  PubMed  Google Scholar 

  • Shu W, Yang H, Zhang L et al (2001) Characterization of a new subfamily of winged-helix/forkhead (Fox) genes that are expressed in the lungs and act as transcriptional repressors. J Biol Chem 276:27488–27497

    CAS  PubMed  Google Scholar 

  • Simard F, Joanette Y, Petrides M et al (2011) Fronto-striatal contributions to lexical set-shifting. Cereb Cortex 21:1084–1093

    PubMed  Google Scholar 

  • Spurzheim JK (1815) The physiognomical system of Drs. Gall and Spurzheim. Printed for Baldwin Cradock and Joy, London

    Google Scholar 

  • Stevens KN (1972) Quantal nature of speech. In: David EE Jr, Denes PB (eds) Human communication: a unified view. McGraw Hill, New York

    Google Scholar 

  • Stuss DT, Benson DF (1986) The frontal lobes. Raven, New York

    Google Scholar 

  • Takemoto H (2001) Morphological analyses of the human tongue musculature for three-dimensional modeling. J Speech Hear Res 44:95–107

    CAS  Google Scholar 

  • Takemoto H (2008) Morphological analyses and 3D modeling of the tongue musculature of the Chimpanzee (Pan troglodytes). Am J Primatol 70:966–975

    PubMed  Google Scholar 

  • Terao S, Li M, Hashizume Y et al (1997) Upper motor neuron lesions in stroke patients do not induce anterograde transneuronal degeneration in spinal anterior horn cells. Stroke 28:2553–2556

    CAS  PubMed  Google Scholar 

  • The Chimpanzee Sequencing and Analysis Consortium (2005) Initial sequence of the Chimpanzee genome and comparison with the human genome. Nature 437:69–87

    Google Scholar 

  • Tishkoff SA, Reed F et al (2007) Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet 39:31–40

    PubMed Central  PubMed  Google Scholar 

  • Tourné LPM (1991) Growth of the pharynx and its physiologic implications. Am J Orthod Dentofac Orthop 99:129–139

    Google Scholar 

  • Trinkaus E (1983) The Shanidar Neandertals. Academic, New York

    Google Scholar 

  • Trinkaus E (2003) Neandertal faces were not long; modern human faces are short. Proc Natl Acad Sci U S A 100:8142–8145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Truby HL, Bosma JF, Lind J (1965) Newborn infant cry. Almquist and Wiksell, Uppsala

    Google Scholar 

  • Tsanas A, Little MA, McSharry PE et al (2009) Accurate telemonitoring of Parkinson’s disease progression by noninvasive speech tests. IEEE Trans Biomed Eng 53:1943–1953

    Google Scholar 

  • Tseng C-Y (1981) An acoustic study of tones in Mandarin. PhD dissertation, Brown University

    Google Scholar 

  • Tyson E (1699) Orang-outang, sive, Homo sylvestris; or, the anatomy of a pygmie compared with that of a monkey, an ape, and a man. Printed for Thomas Bennet and Daniel Brown, London

    Google Scholar 

  • Ullman MT (2004) Contributions of memory circuits to language: the declarative/procedural model. Cognition 92:311–270

    Google Scholar 

  • Vargha-Khadem F, Watkins K, Alcock K et al (1995) Praxic and nonverbal cognitive deficits in a large family with a genetically transmitted speech and language disorder. Proc Natl Acad Sci U S A 92:930–933

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vargha-Khadem F, Watkins KE, Price CJ et al (1998) Neural basis of an inherited speech and language disorder. Proc Natl Acad Sci U S A 95:12695–12700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vorperian HK, Wang S, Chung MK et al (2009) Anatomic development of the oral and pharyngeal proportions of the vocal tract: an imaging study. J Acoust Soc Am 125:1666–1678

    PubMed Central  PubMed  Google Scholar 

  • Wang J, Rao H, Wetmore GS et al (2005) Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress. Proc Natl Acad Sci U S A 102:17804–17809

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watkins KE, Vargha-Khadem F, Ashburner J et al (2002) MRI analysis of an inherited speech and language disorder: structural brain abnormalities. Brain 125:465–478

    CAS  PubMed  Google Scholar 

  • Westhorpe RN (1987) The position of the larynx in children and its relationship to the ease of intubation. Anaesth Intensive Care 15:384–388

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Lieberman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Lieberman, P., McCarthy, R.C. (2013). The Evolution of Speech and Language. In: Henke, W., Tattersall, I. (eds) Handbook of Paleoanthropology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27800-6_79-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27800-6_79-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27800-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics