Virtual Anthropology and Biomechanics

Living reference work entry

Abstract

The scarcity of fossil hominins imposes the obligation to extract as much information as possible from the few existing remains. Virtual anthropology exploits digital technologies in an interdisciplinary framework to study the morphology of specimens in 3D and 4D. It can contribute to this aim because structures are easily accessible, powerful morphometric analyses can inform about intragroup and between-group form and shape variation, data manipulations and reconstructions become more reproducible, and sample sizes can be increased via sharing of electronic data. The six main areas of virtual anthropology – digitize, expose, compare, reconstruct, materialize, and share – are introduced in this chapter. Biomechanics on the other hand allows inferring certain aspects of function via the study of loadings in structures. Though an efficient formal bridge between those two domains is still missing, there are many overlaps and cross-fertilizations visible, possibly leading into a “virtual functional morphology” to better understand evolutionary adaptations.

Keywords

Finite Element Analysis Rapid Prototype Fetal Alcohol Syndrome Functional Morphology Geometric Morphometrics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderl H, Zur Nedden D, Muhlbauer W, Twerdy K, Zanon E, Wicke K, Knapp R (1994) Ideas and innovations – CT-guided stereolithography as a new tool in craniofacial surgery. Br J Plast Surg 47:60–64PubMedGoogle Scholar
  2. Archer W, Braun DR (2010) Variability in bifacial technology at Elandsfontein, Western Cape, South Africa: a geometric morphometric approach. J Archaeol Sci 37:201–209Google Scholar
  3. Baylac M, Friess M (2005) Fourier descriptors, procrustes superimposition, and data dimensionality: an example of cranial shape analysis in modern human populations. In: Slice DE (ed) Modern morphometrics in physical anthropology. Kluwer, New YorkGoogle Scholar
  4. Benazzi S, Bookstein FL, Strait DS et al (2011a) A new OH5 reconstruction with an assessment of its uncertainty. J Hum Evol 61:75–88PubMedGoogle Scholar
  5. Benazzi S, Kullmer O, Grosse I et al (2011b) Using occlusal wear information and finite element analysis to investigate stress distributions in human molars. J Anat 219:259–272PubMedCentralPubMedGoogle Scholar
  6. Benazzi S, Kullmer O, Schulz D et al (2013a) Individual tooth macrowear pattern guides the reconstruction of Sts 52 (A. africanus) dental arches. Am J Phys Anthropol 150:324–329PubMedGoogle Scholar
  7. Benazzi S, Grosse IR, Gruppioni G et al (2013b) Comparison of occlusal loading conditions in a lower second premolar using three-dimensional finite element analysis. Clin Oral Investig. doi:10.1007/s00784-013-0973-8PubMedGoogle Scholar
  8. Bookstein FL (1978) The measurement of biological shape and shape change, vol 24, Lecture notes in biomathematics. Springer, New YorkGoogle Scholar
  9. Bookstein FL (1989) Principal warps: thin plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11:567–585Google Scholar
  10. Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge/New York. [Orange book]Google Scholar
  11. Bookstein FL (1996) Combining the tools of geometric morphometrics. In: Marcus LF (ed) Advances in morphometrics. Plenum Press, New York, pp 131–152Google Scholar
  12. Bookstein FL (2012) Form, function, and allometry for twenty-first century biology: the relation between geometric morphometrics and finite element analysis. Biol Theory. doi:10.1007/s13752-012-0064-0Google Scholar
  13. Bookstein FL, Streissguth AP, Connor PD et al (2006) Damage to the human cerebellum from prenatal alcohol exposure: the anatomy of a simple biometrical explanation. Anat Rec 289B:195–209Google Scholar
  14. Bräuer G, Groden C, Gröning F et al (2004) Virtual study of the endocranial morphology of the matrix-filled cranium from Eliye Springs, Kenya. Anat Rec A 276A:113–133Google Scholar
  15. Bruner E, Manzi G, Arsuaga JL (2003) Encephalization and allometric trajectories in the genus Homo: evidence from the Neandertal and modern lineages. Proc Natl Acad Sci USA 100:15335–15340PubMedCentralPubMedGoogle Scholar
  16. Buchanan B, Collard M (2010) A geometric morphometrics-based assessment of blade shape differences among Paleoindian projectile point types from western North America. J Archaeol Sci 37:350–359Google Scholar
  17. Bugaighis I, O’higgins P, Tiddeman B et al (2010) Three-dimensional geometric morphometrics applied to the study of children with cleft lip and/or palate from the North East of England. Eur J Orthod 32:514–521PubMedGoogle Scholar
  18. Carlson KJ, Stout D, Jashashvili T, De Ruiter DJ, Tafforeau P, Carlson K, Berger LR (2011) The endocast of MH1, Australopithecus sediba. Science 333:1402–1407PubMedGoogle Scholar
  19. Colbert MW, Racicot R, Rowe T (2005) Anatomy of the cranial endocast of the bottlenose dolphin, Tursiops truncatus, based on HRXCT. J Mamm Evol 12:195–207Google Scholar
  20. Conroy GC, Vannier M (1984) Noninvasive three-dimensional computer imaging of matrix-filled fossil skulls by high-resolution computed tomography. Science 226:456–458PubMedGoogle Scholar
  21. Conroy GC, Vannier MW (1987) Dental development of the Taung skull from computerized tomography. Nature 329:625–627PubMedGoogle Scholar
  22. Conroy GC, Weber GW, Seidler H et al (1998) Endocranial capacity in an early hominid cranium from Sterkfontein, South Africa. Science 280:1730–1731PubMedGoogle Scholar
  23. Conroy GC, Weber GW, Seidler H et al (2000) Endocranial capacity of the Bodo cranium determined from three-dimensional computed tomography. Am J Phys Anthropol 113:111–118PubMedGoogle Scholar
  24. Cox PG, Fagan MJ, Rayfield EJ et al (2011) Finite element modelling of squirrel, guinea pig and rat skulls: using geometric morphometrics to assess sensitivity. Eur J Anat 219:696–709Google Scholar
  25. Curnoe D, Xueping J, Herries AIR, Kanning B, Taçon PSC, Zhende B, Fink D, Yunsheng Z, Hellstrom J, Yun L, Cassis G, Bing S, Wroe S, Shi H, Parr WCH, Shengmin H, Rogers N (2012) Human remains from the Pleistocene-Holocene transition of Southwest China suggest a complex evolutionary history for East Asians. PLoS ONE 7:1–28Google Scholar
  26. Curtis N, Kupczik K, O’Higgins P et al (2008) Predicting skull loading: applying multibody dynamics analysis to a macaque skull. Anat Rec 291:491–501Google Scholar
  27. Curtis N, Jones MEH, Evans SE et al (2013) Cranial sutures work collectively to distribute strain throughout the reptile skull. J R Soc Interface 10(86):20130442PubMedCentralPubMedGoogle Scholar
  28. Daegling DJ, Hotzman JL (2003) Functional significance of cortical bone distribution in anthropoid mandibles: an in vitro assessment of bone strain under combined loads. Am J Phys Anthropol 122:38–50PubMedGoogle Scholar
  29. Darwin C (1871) The descent of man, and selection in relation to sex, vol II. John Murray, LondonGoogle Scholar
  30. Delson E, Harcourt-Smith WEH, Frost SR et al (2007) Databases, data access, and data sharing in paleoanthropology: first steps. Evol Anthropol 16:161–163Google Scholar
  31. Demes B, Creel N (1988) Bite force, diet, and cranial morphology of fossil hominids. J Hum Evol 17:657–670Google Scholar
  32. Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, New YorkGoogle Scholar
  33. Dumont ER, Grosse IR, Slater GJ (2009) Requirements for comparing the performance of finite element models of biological structures. J Theor Biol 256:96–103PubMedGoogle Scholar
  34. Falk D, Redmond JC Jr, Guyer J et al (2000) Early hominid brain evolution: a new look at old endocasts. J Hum Evol 38:695–717PubMedGoogle Scholar
  35. Fink B, Grammer K, Mitteroecker P et al (2005) Second to fourth digit ratio and face shape. Proc R Soc B Biol Sci 272:1995–2001Google Scholar
  36. Fitton LC, Shi JF, Fagan MJ et al (2012) Masticatory loadings and cranial deformation in Macaca fascicularis: a finite element analysis sensitivity study. J Anat 221:55–68PubMedGoogle Scholar
  37. Fleagle JG, Simons EL (1982) The humerus of Aegyptopithecus zeuxis, a primitive anthropoid. Am J Phys Anthropol 59:175–193PubMedGoogle Scholar
  38. Gibbons A (2002) Glasnost for hominids: seeking access to fossils. Science 297:1464–1468PubMedGoogle Scholar
  39. Gonzalez RC, Woods RE (2008) Digital image processing, 3rd edn. Prentice Hall International, Upper Saddle RiverGoogle Scholar
  40. Gorjanović-Kramberger K (1902) Der paläolithische Mensch und seine Zeitgenossen aus dem Diluvium von Krapina in Kroatien. Alfred Hölder, ViennaGoogle Scholar
  41. Gower JC (1975) Generalized procrustes analysis. Psychometrika 40:33–51Google Scholar
  42. Grine FE, Gunz P, Betti-Nash L et al (2010) Reconstruction of the late Pleistocene human skull from Hofmeyr, South Africa. J Hum Evol 59:1–15PubMedGoogle Scholar
  43. Gröning F, Liu J, Fagan MJ et al (2011) Why do humans have chins? Testing the mechanical significance of modern human symphyseal morphology with finite element analysis. Am J Phys Anthropol 144:593–606PubMedGoogle Scholar
  44. Gunz P, Mitteroecker P, Bookstein FL (2005) Semilandmarks in three dimensions. In: Slice DE (ed) Modern morphometrics in physical anthropology. Kluwer, New York, pp 73–98Google Scholar
  45. Gunz P, Bookstein FL, Mitteroecker P et al (2009a) Early modern human diversity suggests subdivided population structure and a complex out-of-Africa scenario. Proc Natl Acad Sci USA 106:6094–6098PubMedCentralPubMedGoogle Scholar
  46. Gunz P, Mitteroecker P, Neubauer S et al (2009b) Principles for the virtual reconstruction of hominin crania. J Hum Evol 57:48–62PubMedGoogle Scholar
  47. Henke W (2007) Paläoanthropologie –Standortbestimmung einer innovativen Disziplin. Archäol Inform 30:1–23Google Scholar
  48. Heuzé Y, Marreiros F, Verius M et al (2008) The use of Procrustes average shape in the design of custom implant surface for large skull defects. Int J CARS 3(Suppl 1):S283–S284Google Scholar
  49. Hjalgrim H, Lynnerup N, Liversage M et al (1995) Stereolithography: potential applications in anthropological studies. Am J Phys Anthropol 97:329–333PubMedGoogle Scholar
  50. Holloway R, Broadfield DC, Yuan MS (2004) Human fossil record:3: Brain endocasts. Wiley, New YorkGoogle Scholar
  51. Hublin JJ, Spoor F, Braun M et al (1996) A late Neanderthal associated with upper Palaeolithic artefacts. Nature 381:224–226PubMedGoogle Scholar
  52. Huxley TH (1863) Evidence as to man’s place in nature. D. Appleton, New YorkGoogle Scholar
  53. Hylander WL (1979) An experimental analysis of temporomandibular joint reaction force in macaques. Am J Phys Anthropol 51:433–456PubMedGoogle Scholar
  54. Jeffery N, Spoor F (2002) Brain size and the human cranial base: a prenatal perspective. Am J Phys Anthropol 118:324–340PubMedGoogle Scholar
  55. Kalvin AD, Dean D, Hublin JJ (1995) Reconstruction of human fossils. IEEE Comput Graph 3:4–6Google Scholar
  56. Kimbel WH, Rak Y, Johanson DC (2004) The skull of Australopithecus afarensis. Oxford University Press, New YorkGoogle Scholar
  57. Klein HM, Schneider W, Alzen G et al (1992) Pediatric craniofacial surgery: comparison of milling and stereolithography for 3D model manufacturing. Pediatr Radiol 22:458–460PubMedGoogle Scholar
  58. Koolstra JH, Van Eijden TMGJ (2005) Combined finite-element and rigid-body analysis of human jaw joint dynamics. J Biomech 38:2431–2439PubMedGoogle Scholar
  59. Kuhl FP, Giardina CR (1982) Elliptic fourier features of a closed contour. Comput Graph Imag Process 18:236–258Google Scholar
  60. Kullmer O (2008) Benefits and risks in virtual anthropology. J Anthropol Sci 86:205–207PubMedGoogle Scholar
  61. Kullmer O, Benazzi S, Fiorenza L et al (2009) Technical note: occlusal fingerprint analysis: quantification of tooth wear pattern. Am J Phys Anthropol 139:600–605PubMedGoogle Scholar
  62. Kupczik K, Dobson CA, Crompton RH et al (2009) Masticatory loading and bone adaptation in the supraorbital torus of developing macaques. Am J Phys Anthropol 139:193–203PubMedGoogle Scholar
  63. Kustár A, Forró L, Kalina I, Fazekas F, Honti S, Makra S, Friess M (2013) FACE-R-A 3D database of 400 living individuals’ full head ct- and face scans and preliminary GMM analysis for craniofacial reconstruction. J Forensic Sci 58:1420–1428PubMedGoogle Scholar
  64. Landau M (1984) Human evolution as narrative. Am Sci 72:262–268Google Scholar
  65. Ledogar JA, Smith AL, Benazzi S, Weber GW, Spencer MA, Carlson KB, McNulty KP, Dechow PC, Grosse IR, Ross CF, Richmond BG, Wright BW, Wang Q, Byron C, Slice DE, Carlson KJ, De Ruiter DJ, Berger LR, Tamvada K, Smith L, Berthaume M, Strait DS (2014) Constraints on feeding biomechanics in Australopithecus sediba. Am J Phys Anthropol 153:166–167Google Scholar
  66. Lele SR, Richtsmeier JT (1991) Euclidean distance matrix analysis: a coordinate free approach for comparing biological shapes using landmark data. Am J Phys Anthropol 86:415–427PubMedGoogle Scholar
  67. Lele SR, Richtsmeier JT (2001) An invariant approach to statistical analysis of shapes. Chapman & Hall/CRC, New YorkGoogle Scholar
  68. Lin SCH, Douglass MJ, Holdaway SJ et al (2010) The application of 3D laser scanning technology to the assessment of ordinal and mechanical cortex quantification in lithic analysis. J Archaeol Sci 37:694–702Google Scholar
  69. Lucas PW (2004) Dental functional morphology – how teeth work. Cambridge University Press, CambridgeGoogle Scholar
  70. Lycett SJ, Cramon-Taubadel NV, JaJ G (2010) A comparative 3D geometric morphometric analysis of Victoria West cores: implications for the origins of Levallois technology. J Archaeol Sci 37:1110–1117Google Scholar
  71. Macrini TE, Rowe T, Vandeberg JL (2007) Cranial endocasts from a growth series of Monodelphis domestica (Didelphidae, Marsupialia): a study of individual and ontogenetic variation. J Morphol 268:844–865PubMedGoogle Scholar
  72. Mafart B (2008) Human fossils and paleoanthropologists: a complex relation. J Anthropol Sci 86:201–204PubMedGoogle Scholar
  73. Marcus LF, Corti M, Loy A et al (1996) Advances in morphometrics. Plenum Press, New York. [White Book]Google Scholar
  74. Mardia KV, Bookstein FL, Moreton IJ (2000) Statistical assessment of bilateral symmetry of shapes. Biometrika 87:285–300Google Scholar
  75. Martin R (1914) Lehrbuch der Anthropologie in systematischer Darstellung. Verlag von Gustav Fischer, JenaGoogle Scholar
  76. Martin RD (1983) Human brain evolution in an ecological context. In: 52nd James Arthur lecture on the evolution of the human brain 1982. American Museum of Natural History, Columbia University Press, New YorkGoogle Scholar
  77. Meindl K, Windhager S, Wallner B et al (2012) Second-to-fourth digit ratio and facial shape in boys: the lower the digit ratio, the more robust the face. Proc Biol Sci R Soc 279:2457–2463Google Scholar
  78. Neeser R, Ackermann RR, Gain J (2009) Comparing the accuracy and precision of three techniques used for estimating missing landmarks when reconstructing fossil hominin crania. Am J Phys Anthropol 140:1–18PubMedGoogle Scholar
  79. Neubauer S, Hublin JJ (2012) The evolution of human brain development. Evol Biol 39:568–586Google Scholar
  80. Neubauer S, Gunz P, Mitteroecker P et al (2004) Three-dimensional digital imaging of the partial Australopithecus africanus endocranium MLD 37/38. Can Assoc Radiol J 55:271–278PubMedGoogle Scholar
  81. O’Gorman L, Sammon MJ, Seul M (2008) Practical algorithms for image analysis with CD-ROM. Cambridge University Press, CambridgeGoogle Scholar
  82. O’Higgins P, Cobb SN, Fitton LC et al (2010) Combining geometric morphometrics and functional simulation: an emerging toolkit for virtual functional analyses. J Anat 218:3–15PubMedCentralPubMedGoogle Scholar
  83. O’Higgins P, Fitton LC, Phillips R et al (2012) Virtual functional morphology: novel approaches to the study of craniofacial form and function. Evol Biol 39:521–535Google Scholar
  84. Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, Heinze A, Renaud G, Sudmant PH, De Filippo C, Li H, Mallick S, Dannemann M, Fu Q, Kircher M, Kuhlwilm M, Lachmann M, Meyer M, Ongyerth M, Siebauer M, Theunert C, Tandon A, Moorjani P, Pickrell J, Mullikin JC, Vohr SH, Green RE, Hellmann I, Johnson PLF, Blanche H, Cann H, Kitzman JO, Shendure J, Eichler EE, Lein ES, Bakken TE, Golovanova LV, Doronichev VB, Shunkov MV, Derevianko AP, Viola B, Slatkin M, Reich D, Kelso J, Pääbo S (2014) The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505:43–49PubMedGoogle Scholar
  85. Paredes UM, Prys-Jones R, Adams M et al (2012) Micro-CT X-rays do not fragment DNA in preserved bird skins. J Zool Syst Evol Res 50:247–250Google Scholar
  86. Parr WCH, Wroe S, Chamoli U et al (2012) Toward integration of geometric morphometrics and computational biomechanics: new methods for 3D virtual reconstruction and quantitative analysis of finite element models. J Theor Biol 301:1–14PubMedGoogle Scholar
  87. Paul T, Bookstein F, Weber G (2013) Seeing through the face: a morphological approach in physical anthropology. In: 3rd symposium on facial analysis and animation, FAA 2012, Vienna, 21 Sept 2012. ACM International Conference Proceeding Series Code 97660Google Scholar
  88. Pflüger LS, Oberzaucher E, Katina S et al (2012) Cues to fertility: perceived attractiveness and facial shape predict reproductive success. Evol Hum Behav 33:708–714Google Scholar
  89. Ponce De Leon MS, Zollikofer CP (1999) New evidence from Le Moustier 1: computer-assisted reconstruction and morphometry of the skull. Anat Rec 254:474–489PubMedGoogle Scholar
  90. Prossinger H, Seidler H, Wicke L et al (2003) Electronic removal of encrustations inside the Steinheim cranium reveals paranasal sinus features and deformations, and provides a revised endocranial volume estimate. Anat Rec 273B:132–142Google Scholar
  91. Ravosa MJ, Johnson KR, Hylander WL (2000) Strain in the galago facial skull. J Morphol 245:51–66PubMedGoogle Scholar
  92. Rayfield EJ (2005) Using finite-element analysis to investigate suture morphology: a case study using large carnivorous dinosaurs. Anat A Discov Mol Cell Evol Biol 283:349–365Google Scholar
  93. Recheis W, Weber GW, Schafer K et al (1999) New methods and techniques in anthropology. Coll Antropol 23:495–509PubMedGoogle Scholar
  94. Richards GD, Jabbour RS, Horton CF et al (2012) Color changes in modern and fossil teeth induced by synchrotron microtomography. Am J Phys Anthropol 149:172–180PubMedGoogle Scholar
  95. Rohen JW (2007) Functional morphology: the dynamic wholeness of the human organism. Hillsdale, New YorkGoogle Scholar
  96. Rohlf FJ (1999) On the use of shape spaces to compare morphometric methods. Hystrix 11:9–25Google Scholar
  97. Rohlf FJ (2003) Bias and error in estimates of mean shape in morphometrics. J Hum Evol 44:665–683PubMedGoogle Scholar
  98. Rohlf FJ, Marcus LF (1993) A revolution in morphometrics. TREE 8:129–132Google Scholar
  99. Ross CF (2005) Finite element analysis in vertebrate biomechanics. Anat A Discov Mol Cell Evol Biol 283:253–258Google Scholar
  100. Rowe TB, Eiting TP, Macrini TE et al (2005) Organization of the olfactory and respiratory skeleton in the nose of the gray short-tailed opossum Monodelphis domestica. J Mamm Evol 12:303–336Google Scholar
  101. Ryan TM, Burney DA, Godfrey LR et al (2008) A reconstruction of the Vienna skull of Hadropithecus stenognathus. Proc Natl Acad Sci U S A 105:10699–10702PubMedCentralPubMedGoogle Scholar
  102. Sanchez S, Ahlberg PE, Trinajstic KM et al (2012) Three-dimensional synchrotron virtual paleohistology: a new insight into the world of fossil bone microstructures. Microsc Microanal 18:1095–1105PubMedGoogle Scholar
  103. Schmerling PC (1833) In: PJ Collardin (ed) Recherches sur les ossemens fossiles découverts dans les cavernes de la Province de Liège, vol I. Universitè de Liège, LiègeGoogle Scholar
  104. Seidler H, Bernhard W, Teschler-Nicola M et al (1992) Some anthropological aspects of the prehistoric Tyrolean ice man. Science 258:455–457PubMedGoogle Scholar
  105. Seidler H, Falk D, Stringer C et al (1997) A comparative study of stereolithographically modelled skulls of Petralona and Broken Hill: implications for future studies of middle Pleistocene hominid evolution. J Hum Evol 33:691–703PubMedGoogle Scholar
  106. Sellers WI, Crompton RH (2004) Using sensitivity analysis to validate the predictions of a biomechanical model of bite forces. Ann Anat 186:89–95PubMedGoogle Scholar
  107. Semendeferi K, Damasio H, Frank R et al (1997) The evolution of the frontal lobes: a volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and ape brains. J Hum Evol 32:375–388PubMedGoogle Scholar
  108. Senck S, Coquerelle M, Weber GW et al (2013) Virtual reconstruction of very large skull defects featuring partly and completely missing midsagittal planes. Anat Rec 296:745–758Google Scholar
  109. Slice DE (2005) Modern morphometrics in physical anthropology. Kluwer, New York. Black BookGoogle Scholar
  110. Smith A, Benazzi S, Ledogar JA, Tamvada K, Pryor-Smith LC, Weber GW, Spencer MA, Dechow PC, Grosse IR, Ross CF, Richmond BG, Wright BW, Wang Q, Byron C, Slice DE, Strait DS (2014) Biomechanical implications of intraspecific shape variation in chimpanzee crania: moving towards an integration of geometric morphometrics and finite element analysis. Anat Record (in press)Google Scholar
  111. Soares C (2003) Building an ‘evo bank’. Scientist 17:33Google Scholar
  112. Spencer MA, Demes B (1993) Biomechanical analysis of masticatory system configuration in Neandertals and Inuits. Am J Phys Anthropol 91:1–20PubMedGoogle Scholar
  113. Spoor F, Wood B, Zonneveld F (1994) Implications of early hominid labyrinthine morphology for evolution of human bipedal locomotion. Nature 369:645–648PubMedGoogle Scholar
  114. Spoor CF, Jeffery N, Zonneveld F (2000) Imaging skeletal growth and evolution. In: O’Higgins P, Cohn MJ (eds) Development growth and evolution. Implications for the study of the hominid skeleton. Academic, London, pp 123–161Google Scholar
  115. Strait DS, Weber GW, Neubauer S et al (2009) The feeding biomechanics and dietary ecology of Australopithecus africanus. Proc Natl Acad Sci U S A 106:2124–2129PubMedCentralPubMedGoogle Scholar
  116. Strait DS, Grosse IR, Dechow PC et al (2010) The structural rigidity of the cranium of Australopithecus africanus: implications for diet, dietary adaptations, and the allometry of feeding biomechanics. Anat Rec 293:583–593Google Scholar
  117. Strait DS, Constantino P, Lucas PW et al (2013) Viewpoints: diet and dietary adaptations in early hominins: the hard food perspective. Am J Phys Anthropol 151:339–355PubMedGoogle Scholar
  118. Suwa G, Asfaw B, Kono RT et al (2009) The Ardipithecus ramidus skull and its implications for hominid origins. Science 326:68e61–68e67Google Scholar
  119. Tattersall I, Schwartz JH (2002) Is paleoanthropology science? Naming new fossils and control of access to them. Anat Rec 269:239–241PubMedGoogle Scholar
  120. Thompson JL, Illerhaus B (1998) A new reconstruction of the Le Moustier 1 skull and investigation of internal structures using 3-D-muCT data. J Hum Evol 35:647–665PubMedGoogle Scholar
  121. Tobias PV (2001) Re-creating ancient hominid virtual endocasts by CT-scanning. Clin Anat 14:134–141PubMedGoogle Scholar
  122. Traxler H, Ender HG, Weber G et al (2002) Applying circular posterior-hinged craniotomy to malignant cerebral edemas. Clin Anat 15:173–181PubMedGoogle Scholar
  123. Wang Q, Dechow PC (2006) Elastic properties of external cortical bone in the craniofacial skeleton of the rhesus monkey. Am J Phys Anthropol 131:402–415PubMedGoogle Scholar
  124. Weber GW (2001) Virtual anthropology (VA): a call for glasnost in paleoanthropology. Anat Rec 265:193–201PubMedGoogle Scholar
  125. Weber GW (2013) Another link between archaeology and anthropology: virtual anthropology. DAACH 1:3–7. doi: 10.1016/j.daach.2013.1004.1001, http://authors.elsevier.com/sd/article/S2212054813000027
  126. Weber GW, Bookstein FL (2011a) Virtual anthropology – a guide to a new interdisciplinary field. Springer, Wien/New York. ISBN 978-3-211-48647-4Google Scholar
  127. Weber GW, Bookstein FL (2011b) Sisyphus, or, the goal of establishing palaeoanthropological databases. In: Macchiarelli RWGC (ed) Pleistocene databases: acquisition, storing, sharing. Wissenschaftliche Schriften des Neanderthal Museums 4, Mettmann, pp 103–109Google Scholar
  128. Weber GW, Recheis W, Scholze T et al (1998) Virtual Anthropology (VA): methodological aspects of linear and volume measurements – first results. Coll Antropol 22:575–584PubMedGoogle Scholar
  129. Weber GW, Schäfer K, Prossinger H et al (2001) Virtual anthropology: the digital evolution in anthropological sciences. J Physiol Anthropol Appl Human Sci 20:69–80PubMedGoogle Scholar
  130. Weber GW, Bookstein FL, Strait DS (2011) Virtual anthropology meets biomechanics. J Biomech 44:1429–1432PubMedGoogle Scholar
  131. White TD (2000) A view on the science: physical anthropology at the millennium. Am J Phys Anthropol 113:287–292PubMedGoogle Scholar
  132. Wind J (1984) Computerized x-ray tomography of fossil hominid skulls. Am J Phys Anthropol 63:265–282PubMedGoogle Scholar
  133. Windhager S, Bookstein FL, Grammer K et al (2012) “Cars have their own faces”: cross-cultural ratings of car shapes in biological (stereotypical) terms. Evol Hum Behav 33:109–120Google Scholar
  134. Wroe S, Ferrara TL, Mchenry CR et al (2010) The craniomandibular mechanics of being human. Proc R Soc B Biol Sci 277:3579–3586Google Scholar
  135. Yau YY, Arvier JF, Barker TM (1995) Maxillofacial biomodelling: preliminary result. Br J Radiol 68:519–523PubMedGoogle Scholar
  136. Yoo TS (ed) (2004) Insight into images: principles and practice for segmentation, registration, and image analysis. A. K. Peters, WellesleyGoogle Scholar
  137. Zollikofer CPE, De León M (2005) Virtual reconstruction: a primer in computer-assisted paleoanthropology and biomedicine. Wiley, New YorkGoogle Scholar
  138. Zollikofer CP, Ponce De Leon MS, Martin RD et al (1995) Neanderthal computer skulls. Nature 375:283–285PubMedGoogle Scholar
  139. Zollikofer C, de León M, Martin RD (1998) Computer-assisted paleoanthropology. Evol Anthropol 6:41–54Google Scholar
  140. Zollikofer CP, Ponce De Leon MS, Lieberman DE et al (2005) Virtual cranial reconstruction of Sahelanthropus tchadensis. Nature 434:755–759PubMedGoogle Scholar
  141. Zur Nedden D, Wicke K, Knapp R et al (1994) New findings on the tyrolean ice man – archaeological and Ct-body analysis suggest personal disaster before death. J Archaeol Sci 21:809–818Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of AnthropologyUniversity of ViennaWienAustria

Personalised recommendations