Distance Measures and Applications to Multimodal Variational Imaging

Living reference work entry

Abstract

Today imaging is rapidly improving by increased specificity and sensitivity of measurement devices. However, even more diagnostic information can be gained by combination of data recorded with different imaging systems.

Keywords

Similarity Measure Mutual Information Image Registration Kernel Density Estimation Multimodal Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The work of OS has been supported by the Austrian Science Fund(FWF) within the national research networks Industrial Geometry, project9203-N12, and Photoacoustic Imaging in Biology and Medicine, projectS10505-N20.

The work of CP has been supported by the Austrian Science Fund (FWF) via the Erwin Schrödinger Scholarship J2970.

References

  1. 1.
    Ali, S.M., Silvey, S.D.: A general class of coefficients of divergence of one distribution from another. J. R. Stat. Soc. B 28, 131–142 (1966)MATHMathSciNetGoogle Scholar
  2. 2.
    Bajcsy, R., Kovačič, S.: Multiresolution elastic matching. Comput. Vis. Graph. 46, 1–21 (1989)CrossRefGoogle Scholar
  3. 3.
    Christensen, G.: Deformable shape models for anatomy. PhD thesis, Washington University, Department of Electrical Engineering (1994)Google Scholar
  4. 4.
    Chung, A.C.S., Wells, W.M., Norbash, A., Grimson, W.E.L.: Multi modal image registration by minimizing Kullback-Leibler distance. In: MICCAI’02: Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention-Part II, pp. 525–532. Springer, London (2002)Google Scholar
  5. 5.
    Csiszár, I.: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Magyar Tud Akad Mat Kutató Int Közl 8, 85–108 (1963)MATHGoogle Scholar
  6. 6.
    Dragomir, S.S.: Some general divergence measures for probability distributions. Acta Math. Hung. 109(4), 331–345 (2005)MATHCrossRefGoogle Scholar
  7. 7.
    Droske, M., Rumpf, M.: A variational approach to nonrigid morphological image registration. SIAM J. Appl. Math. 64(2), 668–687 (2003/2004) (electronic)Google Scholar
  8. 8.
    Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Mathematics and Its Applications, vol. 375. Kluwer, Dordrecht (1996)Google Scholar
  9. 9.
    Ens, K., Schumacher, H., Franz, A., Fischer, B.: Improved elastic medical image registration using mutual information. In: Pluim, J.P.W., Reinhardt, J.M. (eds.) Medical Imaging 2007: Image Processing, vol. 6512, p 65122C. SPIE (2007)Google Scholar
  10. 10.
    Fahrmeir, L., Künstler, R., Pigeot, I., Tutz, G.: Statistik, 5th edn. Springer, Berlin (2004)MATHGoogle Scholar
  11. 11.
    Faugeras, O., Hermosillo, G.: Well-posedness of two nonrigid multi modal image registrational methods. SIAM J. Appl. Math. 64(5), 1550–1587 (2004). (electronic)Google Scholar
  12. 12.
    Feldman, D., Österreicher, F.: A note on f-divergences. Stud. Sci. Math. Hung. 24(2–3), 191–200 (1989)MATHGoogle Scholar
  13. 13.
    Gee, J., Haynor, D., Le Briquer, L., Bajcsyand, R.: Advances in elastic matching theory and its implementation. In: CVRMed-MRCAS’97, Grenoble, pp 63–72, 1997Google Scholar
  14. 14.
    Guetter, C., Xu, C., Sauer, F., Hornegger, J.: Learning based non-rigid multi modal image registration using Kullback-Leibler divergence. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005, Palm Springs. Lecture Notes in Computer Science, vol. 3750, pp. 255–262. Springer (2005)Google Scholar
  15. 15.
    Haber, E., Modersitzki, J.: Intensity gradient based registration and fusion of multi modal images. In: Methods of Information in Medicine, pp. 726–733. Schattauer Verlag, Stuttgart (2006)Google Scholar
  16. 16.
    Henn, S., Witsch, K.: Multi modal image registration using a variational approach. SIAM J. Sci. Comput. 25(4), 1429–1447 (2003)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Hermosillo, G.: Variational methods for multi modal image matching. PhD thesis, Université de Nice, France (2002)Google Scholar
  18. 18.
    Hömke, L.: A multigrid method for elastic image registration with additional structural constraints. PhD thesis, Heinrich-Heine Universität, Düsseldorf (2006)Google Scholar
  19. 19.
    Ivanov, V.K., Vasin, V.V., Tanana, V.P.: Theory of Linear Ill-Posed Problems and Its Applications. Inverse and Ill-Posed Problems Series, 2nd edn. VSP, Utrecht (2002). (Translated and revised from the 1978 Russian original)Google Scholar
  20. 20.
    Kaneko, S., Satoh, Y., Igarashi, S.: Using selective correlation coefficient for robust image registration. Pattern Recognit. 36(5), 1165–1173 (2003)CrossRefGoogle Scholar
  21. 21.
    Kim, J., Fessler, J.A.: Intensity-based image registration using robust correlation coefficients. IEEE Trans. Med. Imaging 23(11), 1430–1444 (2004)CrossRefGoogle Scholar
  22. 22.
    Lee, D., Hofmann, M., Steinke, F., Altun, Y., Cahill, N.D., Scholkopf, B.: Learning similarity measure for multi modal 3d image registration. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, pp 186–193. IEEE Service Center, Piscataway (2009)Google Scholar
  23. 23.
    Leventon, M.E., Grimson, W.E.L.: Multi modal volume registration using joint intensity distributions. In: MICCAI’98: Proceedings of the First International Conference on Medical Image Computing and Computer-Assisted Intervention, Cambridge, pp. 1057–1066. Springer, London (1998)Google Scholar
  24. 24.
    Likar, B., Pernus, F.: A hierarchical approach to elastic registration based on mutual information. Image Vis. Comput. 19, 33–44 (2001)CrossRefGoogle Scholar
  25. 25.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multi modality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16(2), 187–198 (1997)CrossRefGoogle Scholar
  26. 26.
    Mattes, D., Haynor, D.R., Vesselle, H., Lewellen, T.K., Eubank, W.: PET-CT image registration in the chest using free-form deformations. IEEE Trans. Med. Imaging 22(1), 120–128 (2003)CrossRefGoogle Scholar
  27. 27.
    Modersitzki, J.: Numerical Methods for Image Registration. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2004)MATHGoogle Scholar
  28. 28.
    Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: f-information measures in medical image registration. IEEE Trans. Med. Imaging 23(12), 1508–1516 (2004)Google Scholar
  29. 29.
    Peckar, W., Schnörr, C., Rohr, K., Stiehl, H.S.: Non-rigid image registration using a parameter-free elastic model. In: British Machine Vision Conference, Southampton (1998)CrossRefGoogle Scholar
  30. 30.
    Pöschl, C.: Tikhonov regularization with general residual term. PhD thesis, Leopold Franzens Universität, Innsbruck (2008)Google Scholar
  31. 31.
    Rachev, S.T.: Probability Metrics and the Stability of Stochastic Models. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Wiley, Chichester (1991)Google Scholar
  32. 32.
    Roche, A.: Recalage d’images médicales par inférence statistique. PhD thesis, Université de Nice, Sophia-Antipolis, France (2001)Google Scholar
  33. 33.
    Roche, A., Malandain, G., Pennec, X., Ayache, N.: The correlation ratio as a new similarity measure for multi modal image registration. In: Medical Image Computing and Computer-Assisted Interventation – MICCAI’98, Cambridge. Lecture Notes in Computer Science, vol. 1496, pp. 1115–1124. Springer (1998)Google Scholar
  34. 34.
    Roche, A., Pennec, X., Ayache, N.: The correlation ratio as a new similarity measure for multi modal image registration. In: Medical Image Computing and Computer-Assisted Intervention MICCAI98, Cambridge. Lecture Notes in Computer Science, vol. 1496, pp. 1115–1124. Springer (1998)Google Scholar
  35. 35.
    Studholme, C.: Measures of 3D medical image alignment. PhD thesis, University of London, London (1997)Google Scholar
  36. 36.
    Vajda, I.: Theory of Statistical Inference and Information. Kluwer, Dordrecht (1989)MATHGoogle Scholar
  37. 37.
    van den Elsen, P., Maintz, J.B.A., Viergever, M.A.: Automatic registration of CT and MR brain images using correlation of geometrical features. IEEE Trans. Med. Imaging. 14(2), 384–396 (1995)CrossRefGoogle Scholar
  38. 38.
    Viola, P.A.: Alignment by maximization of mutual information. PhD thesis, Massachusetts Institute of Technology, Massachusetts (1995)Google Scholar
  39. 39.
    Viola, P.A., Wells, W.M.: Alignment by maximization of mutual information. In: ICCV’95: Proceedings of the Fifth International Conference on Computer Vision, Boston, p. 16. IEEE Computer Society (1995)Google Scholar
  40. 40.
    Wang, X.Y., Feng, D.D.: Automatic elastic medical image registration based on image intensity. Int. J. Image Graph. 5(2), 351–369 (2005)CrossRefGoogle Scholar
  41. 41.
    West, J., Fitzpatrick, J.M., Wang, M.Y., Dawant, B.M., Maurer, C.R., Kessler, R.M., Maciunas, R.J., Barillot, C., Lemoine, D., Collignon, A., Maes, F., Suetens, P., Vandermeulen, D., van den Elsen, P., Napel, S., Sumanaweera, T.S., Harkness, B., Hemler, P.F., Hill, D.L.G., Hawkes, D.J., Studholme, C., Maintz, J.B.A., Viergever, M.A., Malandain, G., Pennec, X., Noz, M.E., Maguire, G.Q., Pollack, M., Pelizzari, C.A., Robb, R.A., Hanson, D., Woods, R.P.: Comparison and evaluation of retrospective intermodality brain image registration techniques. J. Comput. Assist. Tomogr. 21, 554–566 (1997)CrossRefGoogle Scholar
  42. 42.
    Woods, R.P., Cherry, S.R., Mazziotta, J.C.: Rapid automated algorithm for aligning and reslicing PET images. J. Comput. Assist. Tomogr. 16, 620–633 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of MathematicsAlpen Adria Universität KlagenfurtKlagenfurtAustria
  2. 2.Computational Science CenterUniversity of ViennaViennaAustria

Personalised recommendations