Regularization Methods for Ill-Posed Problems

  • Jin ChengEmail author
  • Bernd Hofmann
Living reference work entry


In this chapter are outlined some aspects of the mathematical theory for direct regularization methods aimed at the stable approximate solution of nonlinear ill-posed inverse problems. The focus is on Tikhonov type variational regularization applied to nonlinear ill-posed operator equations formulated in Hilbert and Banach spaces. The chapter begins with the consideration of the classical approach in the Hilbert space setting with quadratic misfit and penalty terms, followed by extensions of the theory to Banach spaces and present assertions on convergence and rates concerning the variational regularization with general convex penalty terms. Recent results refer to the interplay between solution smoothness and nonlinearity conditions expressed by variational inequalities. Six examples of parameter identification problems in integral and differential equations are given in order to show how to apply the theory of this chapter to specific inverse and ill-posed problems.


Hilbert Space Variational Inequality Regularization Parameter Tikhonov Regularization Neighboring Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 10(6), 1217–1229 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Ammari, H.: An Introduction to Mathematics of Emerging Biomedical Imaging. Springer, Berlin (2008)zbMATHGoogle Scholar
  3. 3.
    Anzengruber, S.W., Hofmann, B., Mathé, P.: Regularization properties of the discrepancy principle for Tikhonov regularization in Banach spaces. Appl. Anal. (2013).
  4. 4.
    Anzengruber, S.W., Hofmann, B., Ramlau, R.: On the interplay of basis smoothness and specific range conditions occurring in sparsity regularization. Inverse Probl. 29(12), 125002(21pp) (2013)Google Scholar
  5. 5.
    Anzengruber, S.W., Ramlau, R.: Morozov’s discrepancy principle for Tikhonov-type functionals with nonlinear operators. Inverse Probl. 26(2), 025001(17pp) (2010)Google Scholar
  6. 6.
    Anzengruber, S.W., Ramlau, R.: Convergence rates for Morozov’s discrepancy principle using variational inequalities. Inverse Probl. 27(10), 105007(18pp) (2011)Google Scholar
  7. 7.
    Bakushinsky, A., Goncharsky, A.: Ill-Posed Problems: Theory and Applications. Kluwer, Dordrecht (1994)CrossRefGoogle Scholar
  8. 8.
    Bakushinsky, A.B., Kokurin, M.Yu.: Iterative Methods for Approximate Solution of Inverse Problems. Springer, Dordrecht (2004)zbMATHGoogle Scholar
  9. 9.
    Banks, H.T., Kunisch, K.: Estimation Techniques for Distributed Parameter Systems. Birkhäuser, Boston, (1989)CrossRefzbMATHGoogle Scholar
  10. 10.
    Baumeister, J.: Stable Solution of Inverse Problems. Vieweg, Braunschweig (1987)CrossRefzbMATHGoogle Scholar
  11. 11.
    Baumeister, J.: Deconvolution of appearance potential spectra. In: Kleinman R., Kress R., Martensen E. (eds.) Direct and Inverse Boundary Value Problems. Methoden und Verfahren der mathematischen Physik, vol. 37, pp. 1–13. Peter Lang, Frankfurt am Main (1991)Google Scholar
  12. 12.
    Benning, M., Burger, M.: Error estimates for general fidelities. Electron. Trans. Numer. Anal. 38, 44–68 (2011)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Benning, M., Burger, M.: Ground states and singular vectors of convex variational regularization methods. arXiv:1211.2057v1 (2012)Google Scholar
  14. 14.
    Beretta, E., Vessella, S.: Stable determination of boundaries from Cauchy data. SIAM J. Math. Anal. 30, 220–232 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute of Physics Publishing, Bristol (1998)CrossRefzbMATHGoogle Scholar
  16. 16.
    Bonesky, T., Kazimierski, K., Maass, P., Schöpfer, F., Schuster, T.: Minimization of Tikhonov functionals in Banach spaces. Abstr. Appl. Anal. Art. ID 192679, 19pp (2008)Google Scholar
  17. 17.
    Boţ, R.I., Hofmann, B.: An extension of the variational inequality approach for obtaining convergence rates in regularization of nonlinear ill-posed problems. J. Integral Equ. Appl. 22(3), 369–392 (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Boţ, R.I., Hofmann, B.: The impact of a curious type of smoothness conditions on convergence rates in \(\boldsymbol{\ell^{1}}\)-regularization. Eurasian J. Math. Comput. Appl. 1(1), 29–40 (2013)Google Scholar
  19. 19.
    Bredies, K., Lorenz, D.A.: Regularization with non-convex separable constraints. Inverse Probl. 25(8), 085011(14pp) (2009)Google Scholar
  20. 20.
    Bukhgeim, A.L., Cheng, J., Yamamoto, M.: Stability for an inverse boundary problem of determining a part of a boundary. Inverse Probl 15, 1021–1032 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Burger, M., Flemming, J., Hofmann, B.: Convergence rates in 1-regularization if the sparsity assumption fails. Inverse Probl. 29(2), 025013(16pp) (2013)Google Scholar
  22. 22.
    Burger, M., Osher, S.: Convergence rates of convex variational regularization. Inverse Probl. 20(5), 1411–1421 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Burger, M., Resmerita, E., He, L.: Error estimation for Bregman iterations and inverse scale space methods in image restoration. Computing 81(2–3), 109–135 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Bürger, S., Hofmann, B.: About a deficit in low order convergence rates on the example of autoconvolution. Appl. Anal. (2014, to appear). Preprint 2013–17, Preprintreihe der Fakultät für Mathematik der TU Chemnitz, 2013.
  25. 25.
    Chavent, G.: Nonlinear Least Squares for Inverse Problems. Springer, Dordrecht (2009)zbMATHGoogle Scholar
  26. 26.
    Chavent, G., Kunisch, K.: On weakly nonlinear inverse problems. SIAM J. Appl. Math. 56(2), 542–572 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Chavent, G., Kunisch, K.: State space regularization: geometric theory. Appl. Math. Opt. 37(3), 243–267 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Cheng, J., Hofmann, B., Lu, S.: The index function and Tikhonov regularization for ill-posed problems. J. Comput. Appl. Math. (2013).
  29. 29.
    Cheng, J., Nakamura, G.: Stability for the inverse potential problem by finite measurements on the boundary. Inverse Probl. 17, 273–280 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Cheng, J., Yamamoto, M.: Conditional stabilizing estimation for an integral equation of first kind with analytic kernel. J. Integral Equ. Appl. 12, 39–61 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Cheng, J., Yamamoto, M.: One new strategy for a priori choice of regularizing parameters in Tikhonov’s regularization. Inverse Probl. 16(4), L31–L38 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Clason, C.: L fitting for inverse problems with uniform noise. Inverse Probl. 28(10), 104007(18pp) (2012)Google Scholar
  33. 33.
    Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. Springer, New York (2013)CrossRefzbMATHGoogle Scholar
  34. 34.
    Dai, Z., Lamm, P.K.: Local regularization for the nonlinear inverse autoconvolution problem. SIAM J. Numer. Anal. 46(2), 832–868 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996, 2000)Google Scholar
  36. 36.
    Engl, H.W., Isakov, V.: On the identifiability of steel reinforcement bars in concrete from magnetostatic measurements. Eur. J. Appl. Math. 3, 255–262 (1992)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Engl, H.W., Kunisch, K., Neubauer, A.: Convergence rates for Tikhonov regularisation of non-linear ill-posed problems. Inverse Probl. 5(4), 523–540 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Engl, H.W., Zou, J.: A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction. Inverse Probl. 16(6), 1907–1923 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Favaro, P., Soatto, S. 3-D Shape Estimation and Image Restoration. Exploiting Defocus and Motion Blur. Springer, London (2007)zbMATHGoogle Scholar
  40. 40.
    Fischer, B., Modersitzki, J.: Ill-posed medicine – an introduction to image registration. Inverse Probl. 24(3), 034008(16pp) (2008)Google Scholar
  41. 41.
    Flemming, J.: Generalized Tikhonov Regularization and Modern Convergence Rate Theory in Banach Spaces. Shaker Verlag, Aachen (2012)zbMATHGoogle Scholar
  42. 42.
    Flemming, J.: Variational smoothness assumptions in convergence rate theory – an overview. J. Inverse Ill-Posed Probl. 21(3), 395–409 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Flemming, J.: Regularization of autoconvolution and other ill-posed quadratic equations by decomposition. J. Inverse and Ill-Posed Probl. 22 (2014). doi:10.1515/jip-2013-0038Google Scholar
  44. 44.
    Flemming, J., Hofmann, B.: A new approach to source conditions in regularization with general residual term. Numer. Funct. Anal. Optim. 31(3), 254–284 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Flemming, J., Hofmann, B.: Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities. Inverse Probl. 27(8), 085001(11pp) (2011)Google Scholar
  46. 46.
    Fleischer, G., Hofmann, B.: On inversion rates for the autoconvolution equation. Inverse Probl. 12(4), 419–435 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Gerth, D., Hofmann, B., Birkholz, S., Koke, S., Steinmeyer, G.: Regularization of an autoconvolution problem in ultrashort laser pulse characterization. Inverse Probl. Sci. Eng. 22(2), 245–266 (2014)CrossRefMathSciNetGoogle Scholar
  48. 48.
    Gorenflo, R., Hofmann, B.: On autoconvolution and regularization. Inverse Probl. 10(2), 353–373 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Grasmair, M.: Well-posedness and convergence rates for sparse regularization with sublinear l q penalty term. Inverse Probl. Imaging 3(3), 383–387 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Grasmair, M.: Generalized Bregman distances and convergence rates for non-convex regularization methods. Inverse Probl. 26(11), 115014(16pp) (2010)Google Scholar
  51. 51.
    Grasmair, M.: Variational inequalities and higher order convergence rates for Tikhonov regularisation on Banach spaces. J. Inverse Ill-Posed Probl. 21(3), 379–394 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    Grasmair, M., Haltmeier, M., Scherzer, O.: Sparse regularization with q penalty term. Inverse Probl. 24(5), 055020(13pp) (2008)Google Scholar
  53. 53.
    Grasmair, M., Haltmeier, M., Scherzer, O.: The residual method for regularizing ill-posed problems. Appl. Math. Comput. 218(6), 2693–2710 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Integral Equations of the First Kind. Pitman, Boston (1984)Google Scholar
  55. 55.
    Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)CrossRefGoogle Scholar
  56. 56.
    Hao, D.N., Quyen, T.N.T.: Convergence rates for Tikhonov regularization of coefficient identification problems in Laplace-type equations. Inverse Probl. 26(12), 125014(23pp) (2010)Google Scholar
  57. 57.
    Hein, T.: Tikhonov regularization in Banach spaces – improved convergence rates results. Inverse Probl. 25(3), 035002(18pp) (2009)Google Scholar
  58. 58.
    Hein, T., Hofmann, B.: Approximate source conditions for nonlinear ill-posed problems – chances and limitations. Inverse Probl. 25(3), 035003(16pp) (2009)Google Scholar
  59. 59.
    Hofmann, B.: Regularization for Applied Inverse and Ill-Posed Problems. Teubner, Leipzig (1986)CrossRefzbMATHGoogle Scholar
  60. 60.
    Hofmann, B., Kaltenbacher, B., Pöschl, C., Scherzer, O.: A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Probl. 23(3), 987–1010 (2007)CrossRefzbMATHGoogle Scholar
  61. 61.
    Hofmann, B., Mathé, P.: Analysis of profile functions for general linear regularization methods. SIAM J. Numer. Anal. 45(3), 1122–1141 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  62. 62.
    Hofmann, B., Mathé, P.: Parameter choice in Banach space regularization under variational inequalities. Inverse Probl. 28(10), 104006(17pp) (2012)Google Scholar
  63. 63.
    Hofmann, B., Mathé, P., Pereverzev, S.V.: Regularization by projection: approximation theoretic aspects and distance functions. J. Inverse Ill-Posed Probl. 15(5), 527–545 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  64. 64.
    Hofmann, B., Scherzer, O.: Factors influencing the ill-posedness of nonlinear problems. Inverse Probl. 10(6), 1277–1297 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  65. 65.
    Hofmann, B., Yamamoto, M.: On the interplay of source conditions and variational inequalities for nonlinear ill-posed problems. Appl. Anal. 89(11), 1705–1727 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  66. 66.
    Hohage, T., Pricop, M.: Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise. Inverse Probl. Imaging 2(2), 271–290 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  67. 67.
    Imanuvilov, O.Yu., Yamamoto, M.: Global uniqueness and stability in determining coefficients of wave equations. Commun. Partial Differ. Equ. 26, 1409–1425 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  68. 68.
    Isakov, V.: Inverse Problems for Partial Differential Equations. Springer, New York (2006)zbMATHGoogle Scholar
  69. 69.
    Ito, K., Kunisch, K.: On the choice of the regularization parameter in nonlinear inverse problems. SIAM J. Optim. 2(3), 376–404 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  70. 70.
    Janno, J., Wolfersdorf, L.v.: A general class of autoconvolution equations of the third kind. Z. Anal. Anwendungen 24(3), 523–543 (2005)Google Scholar
  71. 71.
    Jiang, D., Feng, H., Zou, J.: Convergence rates of Tikhonov regularizations for parameter identification in a parabolic-elliptic system. Inverse Probl. 28(10), 104002(20pp) (2012)Google Scholar
  72. 72.
    Jin, B., Zou, J.: Augmented Tikhonov regularization. Inverse Probl. 25(2), 025001(25pp) (2009)Google Scholar
  73. 73.
    Kabanikhin, S.I.: Inverse and Ill-Posed Problems – Theory and Applications. Inverse and Ill-Posed Problems Series, vol. 55. Walter de Gruyter, Berlin (2011)Google Scholar
  74. 74.
    Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems. Springer, New York (2005)zbMATHGoogle Scholar
  75. 75.
    Kaltenbacher, B.: A note on logarithmic convergence rates for nonlinear Tikhonov regularization. J. Inverse Ill-Posed Probl. 16(1), 79–88 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  76. 76.
    Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative Regularization Methods for Nonlinear Ill-Posed Problems. Walter de Gruyter, Berlin (2008)CrossRefzbMATHGoogle Scholar
  77. 77.
    Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems, 2nd edn. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  78. 78.
    Klann, E., Kuhn, M., Lorenz, D.A., Maass, P., Thiele, H.: Shrinkage versus deconvolution. Inverse Probl. 23(5), 2231–2248 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  79. 79.
    Kress, R.: Linear Integral Equations, 2nd edn. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  80. 80.
    Lamm, P.K., Dai, Z.: On local regularization methods for linear Volterra equations and nonlinear equations of Hammerstein type. Inverse Probl. 21(5), 1773–1790 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  81. 81.
    Lattès, R., Lions, J.-L.: The Method of Quasi-Reversibility. Applications to Partial Differential Equations. Modern Analytic and Computational Methods in Science and Mathematics, vol. 18. American Elsevier, New York (1969)Google Scholar
  82. 82.
    Lorenz, D., Rösch, A.: Error estimates for joint Tikhonov and Lavrentiev regularization of constrained control problems. Appl. Anal. 89(11), 1679–1691 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  83. 83.
    Lorenz, D., Worliczek, N.: Necessary conditions for variational regularization schemes. Inverse Probl. 29(7), 075016(19pp), (2013)Google Scholar
  84. 84.
    Louis, A.K.: Inverse und schlecht gestellte Probleme. Teubner, Stuttgart (1989)CrossRefzbMATHGoogle Scholar
  85. 85.
    Louis, A.K.: Approximate inverse for linear and some nonlinear problems. Inverse Probl. 11(6), 1211–1223 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  86. 86.
    Liu, F., Nashed, M.Z.: Regularization of nonlinear ill-posed variational inequalities and convergence rates. Set-Valued Anal. 6(4), 313–344 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  87. 87.
    Lu, S., Flemming, J.: Convergence rate analysis of Tikhonov regularization for nonlinear ill-posed problems with noisy operators. Inverse Probl. 28(10), 104003(19pp) (2012)Google Scholar
  88. 88.
    Lu, S., Pereverzev, S.V., Ramlau, R.: An analysis of Tikhonov regularization for nonlinear ill-posed problems under a general smoothness assumption. Inverse Probl. 23(1), 217–230 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  89. 89.
    Mahale, P., Nair, M.T.: Tikhonov regularization of nonlinear ill-posed equations under general source conditions. J. Inverse Ill-Posed Probl. 15(8), 813–829 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  90. 90.
    Mathé, P., Pereverzev, S.V.: Geometry of linear ill-posed problems in variable Hilbert scales. Inverse Probl. 19(3), 789–803 (2003)CrossRefzbMATHGoogle Scholar
  91. 91.
    Modersitzki, J.: FAIR. Flexible Algorithms for Image Registration. SIAM, Philadelphia (2009)Google Scholar
  92. 92.
    Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer, New York (1984)CrossRefGoogle Scholar
  93. 93.
    Natterer, F.: Imaging and inverse problems of partial differential equations. Jahresber. Dtsch. Math.-Ver. 109(1), 31–48 (2007)zbMATHMathSciNetGoogle Scholar
  94. 94.
    Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. SIAM, Philadelphia (2001)CrossRefzbMATHGoogle Scholar
  95. 95.
    Neubauer, A.: Tikhonov regularization for nonlinear ill-posed problems: optimal convergence rate and finite dimensional approximation. Inverse Probl. 5(4), 541–558 (1989)Google Scholar
  96. 96.
    Neubauer, A.: On enhanced convergence rates for Tikhonov regularization of nonlinear ill-posed problems in Banach spaces. Inverse Probl. 25(6), 065009(10pp) (2009)Google Scholar
  97. 97.
    Neubauer, A., Hein, T., Hofmann, B., Kindermann, S., Tautenhahn, U.: Improved and extended results for enhanced convergence rates of Tikhonov regularization in Banach spaces. Appl. Anal. 89(11), 1729–1743 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  98. 98.
    Phillips, D.L.: A technique for the numerical solution of certain integral equations of the first kind. J. ACM 9(1), 84–97 (1962)CrossRefzbMATHGoogle Scholar
  99. 99.
    Pöschl, C.: Tikhonov Regularization with General Residual Term. PhD thesis, University of Innsbruck, Austria, (2008)Google Scholar
  100. 100.
    Ramlau, R.: Morozov’s discrepancy principle for Tikhonov-regularization of nonlinear operators. Numer. Funct. Anal. and Optim. 23(1–2), 147–172 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  101. 101.
    Ramlau, R.: TIGRA – an iterative algorithm for regularizing nonlinear ill-posed problems. Inverse Probl. 19(2), 433–465 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  102. 102.
    Resmerita, E.: Regularization of ill-posed problems in Banach spaces: convergence rates. Inverse Probl. 21(4), 1303–1314 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  103. 103.
    Resmerita, E., Scherzer, O.: Error estimates for non-quadratic regularization and the relation to enhancement. Inverse Probl. 22(3), 801–814 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  104. 104.
    Rondi, L.: Uniqueness and stability for the determination of boundary defects by electrostatic measurements. Proc. R. Soc. Edinb. Sect. A 130, 1119–1151 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  105. 105.
    Scherzer, O., Engl, H.W., Kunisch, K.: Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems. SIAM J. Numer. Anal. 30(6), 1796–1838 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  106. 106.
    Scherzer, O. (ed.): Mathematical Models for Registration and Applications to Medical Imaging. Mathematics in Industry 10. The European Consortium for Mathematics in Industry. Springer, Berlin (2006)Google Scholar
  107. 107.
    Scherzer, O., Grasmair, M., Grossauer, H., Haltmeiner, M., Lenzen, F.: Variational Methods in Imaging. Springer, New York (2009)zbMATHGoogle Scholar
  108. 108.
    Schleicher, K.-Th., Schulz, S.W., Gmeiner, R., Chun, H.-U.: A computational method for the evaluation of highly resolved DOS functions from APS measurements. J. Electron Spectrosc. Relat. Phenom. 31, 33–56 (1983)CrossRefGoogle Scholar
  109. 109.
    Schuster, T., Kaltenbacher, B., Hofmann, B., Kazimierski, K.S.: Regularization Methods in Banach Spaces. Radon Series on Computational and Applied Mathematics, vol. 10. Walter de Gruyter, Berlin/Boston (2012)Google Scholar
  110. 110.
    Seidman, T.I., Vogel, C.R.: Well posedness and convergence of some regularization methods for nonlinear ill posed problems. Inverse Probl. 5(2), 227–238 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  111. 111.
    Tautenhahn, U.: On a general regularization scheme for nonlinear ill-posed problems. Inverse Probl. 13(5), 1427–1437 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  112. 112.
    Tautenhahn, U.: On the method of Lavrentiev regularization for nonlinear ill-posed problems. Inverse Probl. 18(1), 191–207 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  113. 113.
    Tautenhahn, U., Jin, Q.: Tikhonov regularization and a posteriori rules for solving nonlinear ill-posed problems. Inverse Probl. 19(1), 1–21 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  114. 114.
    Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization method. Dokl. Akad. Nauk SSR 151, 501–504 (1963)Google Scholar
  115. 115.
    Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Wiley, New York (1977)zbMATHGoogle Scholar
  116. 116.
    Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G.: Numerical Methods for the Solution of Ill-Posed Problems. Kluwer, Dordrecht (1995)CrossRefzbMATHGoogle Scholar
  117. 117.
    Tikhonov, A.N., Leonov, A.S., Yagola, A.G.: Nonlinear Ill-Posed Problems, vols. 1 and 2. Series Applied Mathematics and Mathematical Computation, vol. 14. Chapman & Hall, London (1998)Google Scholar
  118. 118.
    Vasin, V.V.: Some tendencies in the Tikhonov regularization of ill-posed problems. J. Inverse Ill-Posed Probl. 14(8), 813–840 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  119. 119.
    Vogel, C.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)CrossRefzbMATHGoogle Scholar
  120. 120.
    Werner, F., Hohage, T.: Convergence rates in expectation for Tikhonov-type regularization of inverse problems with Poisson data. Inverse Probl. 28(10), 104004(15pp) (2012)Google Scholar
  121. 121.
    Yamamoto, M.: On ill-posedness and a Tikhonov regularization for a multidimensional inverse hyperbolic problem. J. Math. Kyoto Univ. 36, 825–856 (1996)zbMATHMathSciNetGoogle Scholar
  122. 122.
    Zarzer, C.A.: On Tikhonov regularization with non-convex sparsity constraints. Inverse Probl. 25(2), 025006(13pp) (2009)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Mathematical SciencesFudan UniversityShanghaiChina
  2. 2.Faculty of MathematicsTechnische Universität ChemnitzChemnitzGermany

Personalised recommendations