Advertisement

Electrical Impedance Tomography

  • Andy AdlerEmail author
  • Romina Gaburro
  • William Lionheart
Living reference work entry

Abstract

This chapter reviews the state of the art and the current open problems in electrical impedance tomography (EIT), which seeks to recover the conductivity (or conductivity and permittivity) of the interior of a body from knowledge of electrical stimulation and measurements on its surface. This problem is also known as the inverse conductivity problem and its mathematical formulation is due to A. P. Calderón, who wrote in 1980, the first mathematical formulation of the problem, “On an inverse boundary value problem.” EIT has interesting applications in fields such as medical imaging (to detect air and fluid flows in the heart and lungs and imaging of the breast and brain) and geophysics (detection of conductive mineral ores and the presence of ground water). It is well known that this problem is severely ill-posed, and thus this chapter is devoted to the study of the uniqueness, stability, and reconstruction of the conductivity from boundary measurements. A detailed distinction between the isotropic and anisotropic case is made, pointing out the major difficulties with the anisotropic case. The issues of global and local measurements are studied, noting that local measurements are more appropriate for practical applications such as screening for breast cancer.

References

  1. 1.
    Adler, A., Lionheart, W.R.B.: Uses and abuses of EIDORS: an extensible software base for EIT. Physiol. Meas. 27, S25–S42 (2006)CrossRefGoogle Scholar
  2. 2.
    Alessandrini, G.: Stable determination of conductivity by boundary measurements. Appl. Anal. 27, 153–172 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Alessandrini, G.: Singular solutions of elliptic equations and the determination of conductivity by boundary measurements. J. Differ. Equ. 84(2), 252–272 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Alessandrini, G.: Determining conductivity by boundary measurements, the stability issue. In: Spigler, R. (ed.) Applied and Industrial Mathematics, pp. 317–324. Kluwer, Dordrecht (1991)CrossRefGoogle Scholar
  5. 5.
    Alessandrini, G.: Open issues of stability for the inverse conductivity problem. J. Inverse Ill-Posed Prob. 15, 451–460 (2007)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Alessandrini, G., Gaburro, R.: Determining conductivity with special anisotropy by boundary measurements. SIAM J. Math. Anal. 33, 153–171 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Alessandrini, G., Gaburro, R.: The local Calderón problem and the determination at the boundary of the conductivity. Commun. PDE 34, 918–936 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Alessandrini, G., Vessella, S.: Lipschitz stability for the inverse conductivity problem. Adv. Appl. Math. 35, 207–241 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Ammari, H., Buffa, A., Nédélec, J.-C.: A justification of eddy currents model for the Maxwell equations. SIAM J. Appl. Math. 60, 1805–1823 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Astala, K., Päivärinta, L.: Calderón’s inverse conductivity problem in the plane. Ann. Math. 163, 265–299 (2006)CrossRefzbMATHGoogle Scholar
  11. 11.
    Barber, D., Brown, B.: Recent developments in applied potential tomography – APT. In: Bacharach, S.L. (ed.) Information Processing in Medical Imaging, pp. 106–121. Nijhoff, Amsterdam (1986)CrossRefGoogle Scholar
  12. 12.
    Barceló, J.A., Faraco, D., Ruiz, A.: Stability of the inverse problem in the plane for less regular conductivities. J. Differ. Equ. 173, 231–270 (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Barceló, J.A., Barceló, T., Ruiz, A.: Stability of Calderón inverse conductivity problem in the plane. J. Math. Pure. Appl. 88, 522–556 (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Beals, R., Coifman, R.: Transformation spectrales et equation d’evolution non lineares. Seminaire Goulaouic-Meyer-Schwarz 9, 1981–1982 (1982)Google Scholar
  15. 15.
    Beals, R., Coifman, R.R.: Linear spectral problems, non-linear equations and the \(\bar{\partial }\)-method. Inverse Prob. 5, 87–130 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Beretta, E., Francini, E.: Lipschitz stability for the electrical impedance tomography problem: the complex case. Commun. PDE 36, 1723–1749 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Berenstein, C.A., Casadio Tarabusi, E.: Integral geometry in hyperbolic spaces and electrical impedance tomography. SIAM J. Appl. Math. 56, 755–64 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Beretta, E., de Hoop, M.V., Qiu, L.: Lipschitz stability of an inverse boundary value problem for a Schrödinger-type equation. SIAM J. Math. Anal. 45(2), 679–699 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Bikowski, J.: Electrical impedance tomography reconstructions in two and three dimensions; from Calderón to direct methods. Ph.D. thesis, Colorado State University, Fort Collins (2009)Google Scholar
  20. 20.
    Borcea, L.: Electrical impedance tomography. Inverse Probl. 18, R99–R136 (2002) [Borcea, L.: Addendum to electrical impedance tomography. Inverse Prob. 19, 997–998 (2003)]Google Scholar
  21. 21.
    Borsic, A, Graham, B.M., Adler, A., Lionheart, W.R.B.: Total variation regularization in electrical impedance tomography. IEEE Trans. Med. Imaging 29(1), 44–54 (2010)CrossRefGoogle Scholar
  22. 22.
    Brown, R.: Global uniqueness in the impedance-imaging problem for less regural conductivities. SIAM J. Math. Anal. 27(4), 1049 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Brown, R., Torres, R.: Uniqueness in the inverse conductivity problem for conductivities with 3 ∕ 2 derivatives in L p, p > 2 n. J. Fourier Anal. Appl. 9, 1049–1056 (2003)Google Scholar
  24. 24.
    Brown, R., Uhlmann, G.: Uniqueness in the inverse conductivity problem with less regular conductivities in two dimensions. Commun. PDE. 22, 1009–1027 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Bukhgeim, A.L., Uhlmann, G.: Recovery a potential from partial Cauchy data. Commun. PDE. 27, 653–668 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Calderón, A.P.: On an inverse boundary value problem. In: Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), pp. 65–73. Sociedade Brasileira de Matemática, Rio de Janeiro (1980)Google Scholar
  27. 27.
    Calderón, A.P.: On an inverse boundary value problem. Comput. Appl. Math. 25(2–3), 133–138 (2006) [Note this reprint has some different typographical errors from the original: in particular on the first page the Dirichlet data for w is ϕ not zero]Google Scholar
  28. 28.
    Chambers, J.E., Meldrum, P.I., Ogilvy, R.D., Wilkinson, P.B.: Characterisation of a NAPL-contaminated former quarry site using electrical impedance tomography. Near Surf. Geophys. 3, 79–90 (2005)Google Scholar
  29. 29.
    Chambers, J.E., Kuras, O., Meldrum, P.I., Ogilvy, R.D., Hollands, J.: Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics 71, B231–B239 (2006)CrossRefGoogle Scholar
  30. 30.
    Cheng, K., Isaacson, D., Newell, J.C., Gisser, D.G.:Electrode models for electric current computed tomography. IEEE Trans. Biomed. Eng. 36, 918–24 (1989)Google Scholar
  31. 31.
    Cheney, M., Isaacson, D., Newell, J.C.: Electrical impedance tomography. SIAM Rev. 41, 85–101 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Ciulli, S., Ispas, S., Pidcock, M.K.: Anomalous thresholds and edge singularities in electrical impedance tomography. J. Math. Phys. 37, 4388 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Colin de VerdiZ̀ere, Y., Gitler, I., Vertigan, D.: Réseaux électriques planaires. II. Comment. Math. Helv. 71, 144–167 (1996)Google Scholar
  34. 34.
    Cornean, H., Knudsen, K., Siltanen, S.: Towards a D-bar reconstruction method for three dimensional EIT. J. Inverse Ill-Posed Prob. 14, 111–134 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Di Cristo, M.: Stable determination of an inhomogeneous inclusion by local boundary measurements. J. Comput. Appl. Math. 198, 414–425 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Dobson, D.C.: Stability and regularity of an inverse elliptic boundary value problem. Technical Report TR90-14 Rice University, Department of Mathematical Sciences (1990)Google Scholar
  37. 37.
    Doerstling, B.H.: A 3-d reconstruction algorithm for the linearized inverse boundary value problem for Maxwell’s equations. Ph.D. thesis, Rensselaer Polytechnic Institute (1995)Google Scholar
  38. 38.
    Druskin, V.: The unique solution of the inverse problem of electrical surveying and electrical well-logging for piecewise-constant conductivity. Izv. Earth Phys. 18, 51–53 (1982) (in Russian)Google Scholar
  39. 39.
    Druskin, V.: On uniqueness of the determination of the three-dimensional underground structures from surface measurements with variously positioned steady-state or monochromatic field sources. Sov. Phys.-Solid Earth 21, 210–214 (1985) (in Russian)Google Scholar
  40. 40.
    Druskin, V.: On the uniqueness of inverse problems for incomplete boundary data. SIAM J. Appl. Math. 58(5), 1591–1603 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Gaburro, R.: Sul problema inverso della tomografia da impedenza elettrica nel caso di conduttivitá anisotropa, Tesi di Laurea in Matematica, Universitá degli Studi di Trieste (1999)Google Scholar
  42. 42.
    Gaburro, R.: Anisotropic conductivity inverse boundary value problems. Ph.D. thesis, University of Manchester Institute of Science and Technology (UMIST), Manchester (2003)Google Scholar
  43. 43.
    Gaburro, R., Lionheart, W.R.B.: Recovering Riemannian metrics in monotone families from boundary data. Inverse Prob. 25, 045004 (2009)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Geotomo Software: RES3DINV ver. 2.16, Rapid 3D Resistivity and IP Inversion Using the Least-Squares Method. Geotomo Software, Malaysia (2009). http://www.geoelectrical.com
  45. 45.
    Gisser, D.G., Isaacson, D., Newell, J.C.: Electric current computed tomography and eigenvalues. SIAM J. Appl. Math. 50, 1623–1634 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Griffiths, H.: Magnetic induction tomography. Meas. Sci. Technol. 12, 1126–1131 (2001)CrossRefGoogle Scholar
  47. 47.
    Griffiths, H., Jossinet, J.: Bioelectric tissue spectroscopy from multi-frequency EIT. Physiol. Meas. 15(Suppl. 2A), 29–35 (1994)Google Scholar
  48. 48.
    Haberman, B., Tataru, D.: Uniqueness in Calderón problem with Lipschitz conductivities. Duke Math. J. 162(3), 435–625 (2013)CrossRefMathSciNetGoogle Scholar
  49. 49.
    Hähner, P.: A periodic Faddeev-type solution operator. J. Differ. Equ. 128, 300–308 (1996)CrossRefzbMATHGoogle Scholar
  50. 50.
    Hanke, M.: On real-time algorithms for the location search of discontinuous conductivities with one measurement. Inverse Prob. 24, 045005 (2008)CrossRefMathSciNetGoogle Scholar
  51. 51.
    Hanke, M., Schappel, B.: The factorization method for electrical impedance tomography in the half-space. SIAM J. Appl. Math. 68, 907–924 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    Hanke, M., Harrach, B., Hynöven, N.: Justification of point electrode models in electrical impedance tomography. Math. Models Methods Appl. Sci. 21, 1395 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    Harrach, B., Seo, JK.: Exact shape-reconstruction by one-step linearization in electrical impedance tomography. SIAM J. Math. Anal. 42, 1505–1518 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    Harrach, B., Ullrich, M.: Monotonicity based shape reconstruction in electrical impedance tomography. SIAM J. Math. Anal. 45(6), 3382–3403 (2013). http://dx.doi.org/10.1137/120886984
  55. 55.
    Heck, H., Wang, J.-N.: Stability estimates for the inverse boundary value problem by partial Cauchy data. Inverse Prob. 22, 1787–1796 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  56. 56.
    Heikkinen, L.M., Vilhunen, T., West, R.M., Vauhkonen, M.: Simultaneous reconstruction of electrode contact impedances and internal electrical properties: II. Laboratory experiments. Meas. Sci. Technol. 13, 1855 (2002)CrossRefGoogle Scholar
  57. 57.
    Heinrich, S., Schiffmann, H., Frerichs, A., Klockgether-Radke, A., Frerichs, I.: Body and head position effects on regional lung ventilation in infants: an electrical impedance tomography study. Intensive Care Med. 32, 1392–1398 (2006)CrossRefGoogle Scholar
  58. 58.
    Henderson, R.P., Webster, J.G.: An impedance camera for spatially specific measurements of the thorax. IEEE Trans. Biomed. Eng. BME-25(3), 250–254 (1978)CrossRefGoogle Scholar
  59. 59.
    Holder, D.S.: Electrical Impedance Tomography Methods History and Applications. Institute of Physics Publishing, Bristol (2005)Google Scholar
  60. 60.
    Huang, S.M., Plaskowski, A., Xie, C.G., Beck, M.S.: Capacitance-based tomographic flow imaging system. Electron. Lett. 24, 418–419 (1988)CrossRefGoogle Scholar
  61. 61.
    Ikehata, M.: The enclosure method and its applications, Chapter 7. In: Analytic Extension Formulas and Their Applications (Fukuoka, 1999/Kyoto, 2000). International Society for Analysis, Applications and Computation, vol. 9, pp. 87–103. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  62. 62.
    Ikehata, M., Siltanen, S.: Numerical method for finding the convex hull of an inclusion in conductivity from boundary measurements. Inverse Prob. 16, 273–296 (2000)MathSciNetGoogle Scholar
  63. 63.
    Ingerman, D., Morrow, J.A.: On a characterization of the kernel of the Dirichlet-to-Neumann map for a planar region. SIAM J. Math. Anal. 29, 106–115 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  64. 64.
    Isaacson, D.: Distinguishability of conductivities by electric current computed tomography. IEEE Trans. Med. Imaging 5, 92–95 (1986)CrossRefGoogle Scholar
  65. 65.
    Isaacson, D., Mueller, J.L., Newell, J., Siltanen, S.: Reconstructions of chest phantoms by the d-bar method for electrical impedance tomography. IEEE Trans. Med. Imaging 23, 821–828 (2004)CrossRefGoogle Scholar
  66. 66.
    Isaacson, D., Mueller, J.L., Newell, J., Siltanen, S.: Imaging cardiac activity by the D-bar method for electrical impedance tomography. Physiol. Meas. 27, S43–S50 (2006)CrossRefGoogle Scholar
  67. 67.
    Isakov, V.: Completeness of products of solutions and some inverse problems for PDE. J. Differ. Equ. 92, 305–317 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  68. 68.
    Isakov, V.: On the uniqueness in the inverse conductivity problem with local data. Inverse Prob. Imaging 1, 95–105 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  69. 69.
    Kaipio, J., Kolehmainen, V., Somersalo, E., Vauhkonen, M.: Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography. Inverse Prob. 16, 1487–1522 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  70. 70.
    Kang, H., Yun, K.: Boundary determination of conductivities and Riemannian metrics via local Dirichlet-to-Neumann operator. SIAM J. Math. Anal. 34, 719–735 (2002)CrossRefMathSciNetGoogle Scholar
  71. 71.
    Kenig, C., Salo, M.: Recent progress in the Calderón problem with partial data. Contemp. Math. 615, 193–222 (2014)CrossRefMathSciNetGoogle Scholar
  72. 72.
    Kenig, C., Salo, M.: The Calderón problem with partial data on manifolds and applications. Anal. PDE 6(8), 2003–2048 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  73. 73.
    Kenig, C., Sjöstrand, J., Uhlmann, G.: The Calderón problem with partial data. Ann. Math. 165, 567–591 (2007)CrossRefzbMATHGoogle Scholar
  74. 74.
    Kim, Y., Woo, H.W.: A prototype system and reconstruction algorithms for electrical impedance technique in medical body imaging. Clin. Phys. Physiol. Meas. 8, 63–70 (1987)CrossRefGoogle Scholar
  75. 75.
    Kohn, R., Vogelius, M.: Identification of an unknown conductivity by means of measurements at the boundary. SIAM-AMS Proc. 14, 113–123 (1984)MathSciNetGoogle Scholar
  76. 76.
    Kohn, R., Vogelius, M.: Determining conductivity by boundary measurements II. Interior results. Commun. Pure Appl. Math. 38, 643–667 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  77. 77.
    Knudsen, K., Lassas, M., Mueller, J.L., Siltanen, S.: Regularized D-bar method for the inverse conductivity problem. Inverse Prob. Imaging 3, 599–562 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  78. 78.
    Lassas, M., Uhlmann, G.: Determining a Riemannian manifold from boundary measurements. Ann. Sci. École Norm. Sup. 34, 771–787 (2001)zbMATHMathSciNetGoogle Scholar
  79. 79.
    Lassas, M., Taylor, M., Uhlmann, G.: The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary. Commun. Geom. Anal. 11, 207–222 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  80. 80.
    Lee, J.M., Uhlmann, G.: Determining anisotropic real-analytic conductivities by boundary measurements. Commun. Pure Appl. Math. 42, 1097–112 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  81. 81.
    Lionheart, W.R.B.: Conformal uniqueness results in anisotropic electrical impedance imaging. Inverse Prob. 13, 125–134 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  82. 82.
    Liu, L.: Stability estimates for the two-deimensional inverse conductivity problem. Ph.D. thesis, University of Rochester, New York (1997)Google Scholar
  83. 83.
    Loke, M.H.: Tutorial: 2-D and 3-D electrical imaging surveys. Geotomo Software (2010). http://www.geoelectrical.com
  84. 84.
    Loke, M.H., Barker, R.D.: Rapid least-squares inversion by a quasi-Newton method. Geophys. Prospect. 44, 131–152 (1996)CrossRefGoogle Scholar
  85. 85.
    Loke, M.H., Chambers, J.E., Ogilvy, R.D.: Inversion of 2D spectral induced polarization imaging data. Geophys. Prospect. 54, 287–301 (2006)CrossRefGoogle Scholar
  86. 86.
    Mandache, N.: Exponential instability in an inverse problem for the Schrödinger equation. Inverse Prob. 17, 1435–1444 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  87. 87.
    Molinari, M., Blott, B.H., Cox, S.J., Daniell, G.J.: Optimal imaging with adaptive mesh refinement in electrical tomography. Physiol. Meas. 23(1), 121–128 (2002)CrossRefGoogle Scholar
  88. 88.
    Nachman, A.: Reconstructions from boundary measurements. Ann. Math. 128, 531–576 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  89. 89.
    Nachman, A.: Global uniqueness for a two dimensional inverse boundary value problem. Ann. Math. 143, 71–96 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  90. 90.
    Nachman, A., Sylvester, J., Uhlmann, G.: An n -dimensional Borg-Levinson theorem. Commun. Math. Phys. 115, 593–605 (1988)CrossRefMathSciNetGoogle Scholar
  91. 91.
    Nakamura, G., Tanuma, K.: Local determination of conductivity at the boundary from the Dirichlet-to-Neumann map. Inverse Prob. 17, 405–419 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  92. 92.
    Nakamura, G., Tanuma, K.: Direct determination of the derivatives of conductivity at the boundary from the localized Dirichlet to Neumann map. Commun. Korean Math. Soc. 16, 415–425 (2001)zbMATHMathSciNetGoogle Scholar
  93. 93.
    Nakamura, G., Tanuma, K.: Formulas for reconstrucing conductivity and its normal derivative at the boundary from the localized Dirichlet to Neumann map. In: Hon, Y.-C., Yamamoto, M., Cheng, J., Lee, J.-Y. (eds.) The First International Conference on Inverse Problems: Recent Development in Theories and Numerics, City University of Hong Kong, Jan 2002, pp. 192–201. World Scientific, River Edge (2002)Google Scholar
  94. 94.
    Novikov, R.G.: A multidimensional inverse spectral problem for the equation \(-\Delta \psi + (v(x) - Eu(x))\psi = 0\). Funktsional. Anal. i Prilozhen. 22(4), 11–22, 96 (1988) (in Russian) [translation in Funct. Anal. Appl. 22(1988), no. 4, 263–272 (1989)]Google Scholar
  95. 95.
    Päivärinta, L., Panchenko, A., Uhlmann, G.: Complex geometrical optics solutions for Lipschitz conductivities. Rev. Mat. Iberoamericana 19, 57–72 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  96. 96.
    Paulson, K., Breckon, W., Pidcock, M.: Electrode modeling in electrical-impedance tomography. SIAM J. Appl. Math. 52, 1012–1022 (1992)CrossRefzbMATHGoogle Scholar
  97. 97.
    Polydorides, N., Lionheart, W.R.B.: A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the electrical impedance and diffuse optical reconstruction software project. Meas. Sci. Technol. 13, 1871–1883 (2002)CrossRefGoogle Scholar
  98. 98.
    Seagar, A.D.: Probing with low frequency electric current. Ph.D. thesis, University of Canterbury, Christchurch (1983)Google Scholar
  99. 99.
    Seagar, A.D., Bates, R.H.T.: Full-wave computed tomography. Pt 4: low-frequency electric current CT. Inst. Electr. Eng Proc. Pt. A 132, 455–466 (1985)Google Scholar
  100. 100.
    Siltanen, S., Mueller, J.L., Isaacson, D.: An implementation of the reconstruction algorithm of A. Nachman for the 2-D inverse conductivity problem. Inverse Prob. 16, 681–699 (2000)Google Scholar
  101. 101.
    Soleimani, M., Lionheart, W.R.B.: Nonlinear image reconstruction for electrical capacitance tomography experimental data using. Meas. Sci. Technol. 16(10), 1987–1996 (2005)CrossRefGoogle Scholar
  102. 102.
    Soleimani, M., Lionheart, W.R.B., Dorn, O.: Level set reconstruction of conductivity and permittivity from boundary electrical measurements using expeimental data. Inverse Prob. Sci. Eng. 14, 193–210 (2006)CrossRefzbMATHGoogle Scholar
  103. 103.
    Somersalo, E., Cheney, M., Isaacson, D.: Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52, 1023–1040 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  104. 104.
    Soni, N.K.: Breast imaging using electrical impedance tomography. Ph.D. thesis, Dartmouth College (2005)Google Scholar
  105. 105.
    Sylvester, J.: An anisotropic inverse boundary value problem. Commun. Pure. Appl. Math. 43, 201–232 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  106. 106.
    Sylvester, J., Uhlmann, G.: A uniqueness theorem for an inverse boundary value problem in electrical prospection. Commun. Pure Appl. Math. 39, 92–112 (1986)CrossRefMathSciNetGoogle Scholar
  107. 107.
    Sylvester, J., Uhlmann, G.: A global uniqueness theorem for an inverse boundary valued problem. Ann. Math. 125, 153–169 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  108. 108.
    Sylvester, J., Uhlmann, G.: Inverse boundary value problems at the boundary-continuous dependence. Commun. Pure Appl. Math. 41, 197–221 (1988)CrossRefMathSciNetGoogle Scholar
  109. 109.
    Tamburrino, A., Rubinacci, G.: A new non-iterative inversion method for electrical resistance tomography. Inverse Prob. 18, 1809–1829 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  110. 110.
    Uhlmann, G.: Topical review: electrical impedance tomography and Calderón’s problem. Inverse Prob. 25, 123011 (2009)CrossRefGoogle Scholar
  111. 111.
    Vauhkonen, M.: Electrical impedance tomography and prior information. Ph.D. thesis, University of Kuopio (1997)Google Scholar
  112. 112.
    Vauhkonen, M., Karjalainen, P.A., Kaipio, J.P.: A Kalman filter approach to track fast impedance changes in electrical impedance tomography. IEEE Trans. Biomed. Eng. 45, 486–493 (1998)CrossRefGoogle Scholar
  113. 113.
    Vauhkonen, M., Lionheart, W.R.B., Heikkinen, L.M., Vauhkonen, P.J., Kaipio, J.P: A MATLAB package for the EIDORS project to reconstruct two-dimensional EIT images. Physiol. Meas. 22, 107–111 (2001)CrossRefGoogle Scholar
  114. 114.
    West, R.M., Jia, X., Williams, R.A.: Parametric modelling in industrial process tomography. Chem. Eng. J. 77, 31–36 (2000)CrossRefGoogle Scholar
  115. 115.
    West, R.M., Soleimani, M., Aykroyd, R.G., Lionheart, W.R.B.: Speed improvement of MCMC image reconstruction in tomography by partial linearization. Int. J. Tomogr. Stat. 4(S06), 13–23 (2006)zbMATHMathSciNetGoogle Scholar
  116. 116.
    Yang, W.Q., Spink, D.M., York, T.A., McCann, H.: An image-reconstruction algorithm based on Landweber’s iteration method for electrical-capacitance tomography. Meas. Sci. Technol. 10, 1065–1069 (1999)CrossRefGoogle Scholar
  117. 117.
    York, T.: Status of electrical tomography in industrial applications. J. Electron. Imag. 10, 608 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Systems and Computer EngineeringClarkson UniversityOttawaCanada
  2. 2.University of LimerickLimerickIreland
  3. 3.The University of ManchesterManchesterUK

Personalised recommendations