Advertisement

It’s All About Statistics: Global Gravity Field Modeling from GOCE and Complementary Data

  • Roland PailEmail author
Living reference work entry

Abstract

Since October 2009, ESA’s dedicated satellite gravity mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) observes the global gravity field of the Earth. The estimation of the model parameters from the original GOCE observations requires the application of tailored tools of geomathematics and statistics. One of the main constraints is to compute pure GOCE models, which are independent of any other external gravity field information. Up to now, four releases of global GOCE gravity field models have been computed and released. Their continuously increasing accuracy is validated by external gravity field information. A key prerequisite for achieving high-quality results is the correct stochastic modeling of all input data types in the frame of a least-squares adjustment procedure based on the rigorous solution of full normal equation systems. Together with the global gravity field models, parameterized as coefficients of a spherical harmonic series expansion, also the related error variance-covariance matrix is generated, which turns out to describe the true errors of the solutions very accurately. The fourth release achieves global geoid height accuracies of 3.5 cm and gravity anomaly accuracies below 1 mGal at a spatial wavelength of 100 km. Further improvements are expected, also because of the GOCE satellite’s orbit lowering in its final mission phase, which will further improve the spatial resolution. In addition to these pure GOCE-only models, in the frame of the GOCO initiative consistent combined gravity field models are processed by including GRACE and SLR data (improving the long wavelengths), as well as terrestrial gravity information and satellite altimetry (improving the high-frequency component). Also for the computation of these optimum combinations, the tools developed for the GOCE processing can largely be applied. Numerous fields of application in geodesy, oceanography, and geophysics can benefit already now from the new GOCE models. As an example, the derivation of global ocean transport processes from a combination of satellite altimetry and global gravity information demonstrates that GOCE can contribute significantly to an improved understanding of processes in system Earth.

Keywords

Gravity Field Satellite Laser Range Gravity Gradient Gravity Field Model Mean Dynamic Topography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author acknowledges the European Space Agency for the provision of the GOCE data.

References

  1. Badura T (2006) Gravity field analysis from satellite orbit information applying the energy integral approach. Dissertation, 109pp, Graz University of TechnologyGoogle Scholar
  2. Bingham RJ, Knudsen P, Andersen O, Pail R (2011) An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys Res Lett 38:EID L01606. American Geophysical Union. doi:10.1029/2010GL045633Google Scholar
  3. Bock H, Jäggi A, Meyer U, Visser P, van den IJssel J, van Helleputte T, Heinze M, Hugentobler U (2011) GPS-derived orbits for the GOCE satellite. J Geod 85(11):807–818. doi:10.1007/s00190-011-0484-9Google Scholar
  4. Braitenberg C, Pivetta T, Li Y (2012) The youngest generation GOCE products in unraveling the mysteries of the crust of North-Central Africa. Geophys Res Abs 14:EGU2012-6022. EGU General Assembly 2012, ViennaGoogle Scholar
  5. Bruinsma SL, Marty JC, Balmino G, Biancale R, Förste C, Abrikosov O, Neumayer H (2010) GOCE Gravity field recovery by means of the direct numerical method. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium, ESA Publication SP-686, ESA/ESTEC, NoordwijkGoogle Scholar
  6. EGG-C (2010) GOCE Level 2 Product Data Handbook. GO-MA-HPF-GS-0110, Issue 4.2. European Space Agency, Noordwijk. http://earth.esa.int/pub/ESA_DOC/GOCE/GO-MA-HPF-GS-0110_4.2-ProductDataHandbook_24062010.pdf
  7. Fecher T, Pail R, Gruber T (2011) Global gravity field determination by combining GOCE and complementary data. In: Ouwehand L (ed) Proceedings of the 4th international GOCE user workshop, ESA Publication SP-696, ESA/ESTEC, NoordwijkGoogle Scholar
  8. Fecher T, Pail R, Gruber T (2013) Global gravity field modeling based on GOCE and complementary gravity data. Int J Appl Earth Observ Geoinf ISSN (online) 0303–2434. doi:10.1016/j.jag.2013.10.005Google Scholar
  9. Floberghagen R, Fehringer M, Lamarre D, Muzi D, Frommknecht B, Steiger C, Piñeiro J, da Costa A (2011) Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. J Geod 85(11):749–758. doi:10.1007/s00190-011-0498-3CrossRefGoogle Scholar
  10. Freeden W, Schreiner M (2010) Satellite gravity gradiometry (SGG): from scalar to tensorial solution. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics, vol 2. Springer, Berlin/Heidelberg, pp 269–302CrossRefGoogle Scholar
  11. Goiginger H, Pail R (2007) Investigation of velocities derived from satellite positions in the framework of the energy integral approach. In: Fletcher K et al (eds) Proceedings 3rd international GOCE user workshop, ESA SP-627, pp 319–324, ESA, ISBN (Print) 92-9092-938-3. ISSN 1609-042XGoogle Scholar
  12. Goiginger H, Pail R (2010) Covariance propagation of latitude-dependent orbit errors within the energy integral approach. In: Mertikas SP et al (eds) Gravity, geoid and earth observation, IAG symposia, Chania, vol 135. Springer, pp 155–161. doi:10.1007/978-3-642-10634-7_21Google Scholar
  13. Grafarend EW, Klapp M, Martinec Z (2010) Spacetime modelling of the Earth’s gravity field by ellipsoidal harmonics. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics, vol 2. Springer, Berlin/Heidelberg, pp 159–252CrossRefGoogle Scholar
  14. Gruber T, Visser PNAM, Ackermann C, Hosse M (2011) Validation of GOCE gravity fieldmodels by means of orbit residuals and geoid comparisons. J Geod 85(11):845–860. Springer. doi:10.1007/s00190-011-0486-7Google Scholar
  15. Hosse M, Pail R, Horwath M, Mahatsente R, Götze H, Jahr T, Jentzsch M, Gutknecht BD, Köther N, Lücke O, Sharma R, Zeumann S (2011) Integrated modeling of satellite gravity data of active plate margins – bridging the gap between geodesy and geophysics. Poster presented at AGU Fall Meeting 2011, San Francisco, 8 Oct 2011Google Scholar
  16. Kargoll B (2007) On the theory and application of model misspecification tests in geodesy. Dissertation, University of Bonn. www.igg.uni-bonn.de/tg/uploads/tx_ikgpublication/Diss_Kargoll.pdf
  17. Kern M, Preimesberger T, Allesch M, Pail R, Bouman J, Koop R (2005) Outlier detection algorithms and their performance in GOCE gravity field processing. J Geod 78(9):509–519. Springer. doi:10.1007/s00190-004-0419-9Google Scholar
  18. Klees R, Ditmar P, Broersen P (2003) How to handle colored observation noise in large least-squares problems. J Geod 76(11–12):629–640. Springer. doi:10.1007/s00190-002-0291-4Google Scholar
  19. Knudsen P, Bingham R, Andersen O, Rio M-H (2011) A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. J Geod 85(11):861–879. doi:10.1007/s00190-011-0485-8CrossRefGoogle Scholar
  20. Koch KH, Kusche J (2002) Regularization of geopotential determination from satellite data by variance components. J Geod 76:259–268. Springer. doi:10.1007/s00190-002-0245-xGoogle Scholar
  21. Krasbutter I, Brockmann JM, Kargoll B, Schuh W-D, Goiginger H, Pail R (2011) Refinement of the stochastic model of GOCE scientific data in a long time series. In: Ouwehand L (ed) Proceedings 4th international GOCE user workshop, ESA publication SP-696, ESA/ESTEC, NoordwijkGoogle Scholar
  22. Kusche J (2010) Time-variable gravity field and global deformation of the Earth. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics, vol 2. Springer, Berlin/Heidelberg, pp 253–268CrossRefGoogle Scholar
  23. Lackner B (2006) Datainspection and hypothesis tests of very long time series applied to GOCE satellite gravity gradiometry data. Dissertation, Graz University of Technology, Graz, 187ppGoogle Scholar
  24. Mayer-Gürr T, Eicker A, Kurtenbach E, Ilk K-H (2010) ITG-GRACE: global static and temporal gravity field models from GRACE data. In: Flechtner F, Gruber T, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds) System Earth via geodetic-geophysical space techniques, pp 159–168. doi:10.1007/978-3-642-10228-8_13Google Scholar
  25. Mayer-Gürr T, Rieser D, Höck E, Brockmann JM, Schuh W-D, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber T (2012) The new combined satellite only model GOCO03S. In: Presentation at international symposium on gravity, Geoid and height systems GGHS, Venice, 10 Oct 2012Google Scholar
  26. Metzler B, Pail R (2005) GOCE data processing: the spherical cap regularization approach. Stud Geophys Geod 49:441–462. doi:10.1007/s11200-005-0021-5CrossRefGoogle Scholar
  27. Migliaccio F, Reguzzoni M, Sansò F, Tscherning CC, Veicherts M (2010) GOCE data analysis: the space-wise approach and the first space-wise gravity field model. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium, ESA Publication SP-686, ESA/ESTEC, NoordwijkGoogle Scholar
  28. Moritz H (1978) Least-squares collocation. Rev Geophys Space Phys 16(3):421–430CrossRefGoogle Scholar
  29. Pail R (2005) A parametric study on the impact of satellite attitude errors on GOCE gravity field recovery. J Geod 79:231–241. Springer. doi:10.1007/s00190-005-0464-zGoogle Scholar
  30. Pail R, Plank G (2002) Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform. J Geod 76:462–474. Springer. doi:10.1007/s00190-002-0277-2Google Scholar
  31. Pail R, Goiginger H, Mayrhofer R, Schuh W-D, Brockmann JM, Krasbutter I, Höck E, Fecher T (2010a) Global gravity field model derived from orbit and gradiometry data applying the time-wise method. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium, ESA Publication SP-686, ESA/ESTEC, NoordwijkGoogle Scholar
  32. Pail R, Goiginger H, Schuh W-D, Höck E, Brockmann JM, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010b) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37:EID L20314. American Geophysical Union. doi:10.1029/2010GL044906Google Scholar
  33. Pail R, Bruinsma S, Migliaccio F., Förste C, Goiginger H, Schuh W-D, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansó F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85(11):819–843. Springer. doi:10.1007/s00190-011-0467-xGoogle Scholar
  34. Pail R, Fecher T, Murböck M, Rexer M, Stetter M, Gruber T, Stummer C (2013) Impact of GOCE level 1b data reprocessing on GOCE-only and combined gravity field models. Studia geophys geod. 57, pp 155–173. doi:10.1007/s11200-012-1149-8, Available online: www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s11200-012-1149-8
  35. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth gravitational model 2008 (EGM2008). J Geophys Res 117(B04406):38. doi:10.1029/2011JB008916Google Scholar
  36. Rummel R (2010) GOCE: gravitational gradiometry in a satellite. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics, vol 2. Springer, pp 93–103. ISBN (Print):978-3-642-01545-8, ISBN (Online):978-3-642-01546-5, doi:10.1007/978-3-642-01546-5_4Google Scholar
  37. Rummel R, Gruber T, Koop R (2004) High level processing facility for GOCE: products and processing strategy. In: Lacoste H (ed) Proceedings 2nd international GOCE user workshop “GOCE, The Geoid and Oceanography”, ESA SP-569, ESA, NoordwijkGoogle Scholar
  38. Rummel R, Yi W, Stummer C (2011) GOCE gravitational gradiometry. J Geod 85(11):777–790. Springer. doi:10.1007/s00190-011-0500-0Google Scholar
  39. Schuh W-D (1996) Tailored numerical solution strategies for the global determination of the Earth’s gravity field. Mitteil Geod Inst TU Graz 81:156Google Scholar
  40. Siemes C (2008) Digital filtering algorithms for decorrelation within large least squares problems. Dissertation, University of BonnGoogle Scholar
  41. Sneeuw N, van Gelderen M (1997) The polar gap. In: Geodetic boundary value problems in view of the one centimeter geoid. Lecture notes in Earth sciences, vol 65. Springer, Berlin, pp 559–568. doi:10.1007/BFb0011699Google Scholar
  42. Stetter M (2012) Stochastische Modellierung von GOCE-Gradiometerbeobachtungen mittels digitaler Filter. Master’s Thesis, no. D240, TU MünchenGoogle Scholar
  43. Stummer C, Fecher T, Pail R (2011) Alternative method for angular rate determination within the GOCE gradiometer processing. J Geod 85(9):585–596. Springer. doi:10.1007/s00190-011-0461-3Google Scholar
  44. Stummer C, Siemes C, Pail R, Frommknecht B, Floberghagen R (2012) Upgrade of the GOCE level 1b gradiometer processor. Adv Space Res 49(4):739–752. doi:10.1016/j.asr.2011.11.027CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Astronomical and Physical GeodesyTechnische Universität MünchenMünchenGermany

Personalised recommendations