Advertisement

Theory of Map Projection: From Riemann Manifolds to Riemann Manifolds

  • Erik W. Grafarend
Living reference work entry

Later version available View entry history

Abstract

The Theory of Map Projections is based here on the transformation of Riemann manifolds to Riemann manifolds. Section 2 offers some orientation based on simultaneous diagonalization of two symmetric matrices. We separate simply connected regions. In detail, we review the pullback versus pushforward operations.Section 3 introduces the first multiplicative measure of deformation: the Cauchy–Green deformation tensor, its polar decomposition, as well as singular value decomposition. An example is the Hammer retroazimuthal projection.A second multiplicative measure of deformation is presented in Sect. 4: stretch, or length distortion, and Tissot portrait as well. The Euler–Lagrange deformation tensor presented in Sect. 5 is the first additive measure of deformation based on the difference of the metrics {ds2, dS2}. Section 6 introduces a review of 25 different measures of deformation. First, angular shear is the second additive measure, also called angular distorsion, left and right.Section 8 introduces a third multiplicative measure of deformation, called relative angular shear. In contrast, the equivalence theorem of conformal mapping in Sect. 9 is based on Korn–Lichtenstein equations. Areal distortion in Sect. 10 offers a popular alternative based on the fourth multiplicative and additive measure of deformation, namely, dual deformation called areomorphism. Section 11 offers an equivalence theorem of equiareal mapping. The highlight is our review of canonical criteria in Sect. 12: (i) isometry; (ii) equidistant mapping of submanifolds; (iii) in particular, canonical conformism, areomorphism, isometry, and equidistance; and finally, (iv) optimal map projections. Please study Sect. 13, the exercise: the Armadillo double projection.

References

  1. Airy GB (1861) Explanation of a projection by balance of errors for maps applying to a very large extent of the Earth’s surface: comparison of this projection with other projections. Philos Mag 22:409–442Google Scholar
  2. Almansi E (1911) Sulle deformazioni finite di solidi elastici isotropi, Note I. Atti Accad naz Lincei Re Serie Quinta 201:705–714Google Scholar
  3. Amalvict M, Livieratos E (1988) Surface mapping of a rotational reference ellipsoid onto a triaxial counterpart through strain parameters. Manuscripta Geodaetica 13:133–138Google Scholar
  4. Blaschke W, Leichtweiß K (1973) Elementare Differentialgeometrie. Springer, Berlin/Heidelberg/New YorkCrossRefMATHGoogle Scholar
  5. Boulware DG, Brown LS, Peccei RD (1970) Deep-inelastic electroproduction and conformal symmetry. Phys Rev D 2:293–298CrossRefGoogle Scholar
  6. Bourguignon JP (1970) Transformation infinitesimal conformes fermées des variétés riemanniennes connexes complètes. C R Acad Sci Ser A 270:1593–1596MathSciNetMATHGoogle Scholar
  7. Cardoso JF, Souloumiac A (1996) Jacobi angles for simultaneous diagonalization. SIAM J Matrix Anal Appl 17:161–164MathSciNetCrossRefMATHGoogle Scholar
  8. Cauchy A (1828) Sur les équations qui expriment les conditions d’équilibre ou les lois du mouvement intérieur d’un corps solide, élastique, ou non élastique. Ex De Math 3:160–187Google Scholar
  9. Cauchy A (1889) Oeuvres complétes, Iie série, tome VII. Gauthier–Villars et Fils, pp 82–93Google Scholar
  10. Cauchy A (1890) Sur l’équilibre et le mouvement d’un systéme de points matériels sollicités par des forces d’attraction ou de répulsion mutuelle, Oeuvres Complétes, Iie série, tome VIII. Gauthier–Villars et Fils, pp 227–252Google Scholar
  11. Chen BY (1973) Geometry of submanifolds. Marcel Dekker, New YorkMATHGoogle Scholar
  12. Chen BY, Yano K (1973) Special conformally flat spaces and canal hypersurfaces. Tohoku Math J 25:77–184MathSciNetCrossRefGoogle Scholar
  13. Chern SS, Hartman P, Wintner A (1954) On isothermic coordinates. Commentarii Mathematici Helvetici 28:301–309MathSciNetCrossRefMATHGoogle Scholar
  14. Chu MT (1991a) A continuous Jacobi-like approach to the simultaneous reduction of real matrices. Linear Algebra Appl 147:75–96MathSciNetCrossRefMATHGoogle Scholar
  15. Chu MT (1991b) Least squares approximation by real normal matrices with specified spectrum. SIAM J Matrix Anal Appl 12:115–127MathSciNetCrossRefMATHGoogle Scholar
  16. Crumeyrolle A (1990) Orthogonal and sympletic Clifford algebras. Kluwer Academic, Dordrecht/Boston/LondonCrossRefGoogle Scholar
  17. De Azcárraga JA, Izquierdo JM (1995) Lie groups, Lie algebras, cohomology and some applications in physics. Cambridge monographs on mathematical physics. Cambridge University Press, Cambridge/New YorkCrossRefGoogle Scholar
  18. De Moor B, Zha H (1991) A tree of generalizations of the ordinary singular value decomposition. Linear Algebra Appl 147:469–500MathSciNetCrossRefMATHGoogle Scholar
  19. Dermanis A, Livieratos E (1993) Dilatation, shear, rotation and energy: analysis of map projections. Bollettino di Geodesia e Science Affini 42:53–68Google Scholar
  20. Do Carmo MP (1994) Differential forms and applications. Springer, Berlin/New YorkCrossRefMATHGoogle Scholar
  21. Do Carmo M, Dajczer M, Mercuri F (1985) Compact conformally flat hypersurfaces. Trans Am Math Soc 288:189–203MathSciNetCrossRefMATHGoogle Scholar
  22. Duda FP, Martins LC (1995) Compatibility conditions for the Cauchy–Green strain fields: solutions for the plane case. J Elast 39:247–264MathSciNetCrossRefMATHGoogle Scholar
  23. Eisenhart LP (1949) Riemannian geometry. Princeton University Press, PrincetonMATHGoogle Scholar
  24. Euler L (1755) Principes généraux des mouvement des fluides, Memoirs de l’Accad. des Sciences de Berlin 11:274–315Google Scholar
  25. Euler L (1777) Über die Abbildung einer Kugelfläche in die Ebene. Acta Academiae Scientiarum Petropolitanae, PetersburgGoogle Scholar
  26. Ferrara S, Grillo AF, Gatto R (1972) Conformal algebra in two space-time dimensions and the Thirring model. Il Nuovo Cinmento 12A:959–968MathSciNetCrossRefGoogle Scholar
  27. Finger J (1894) Über die allgemeinsten Beziehungen zwischen den Deformationen und den zugehörigen Spannungen in aerotropen und isotropen Substanzen. Sitzber Akad Wiss Wien (2a) 103:1073–1100Google Scholar
  28. Finzi A (1922) Sulle varieta in rappresentazione conforme con la varieta euclidea a piu di tre dimensioni. Rend Acc Lincei Classe Sci Ser 5–31:8–12Google Scholar
  29. Flanders H (1970) Differential forms with applications to the physical sciences, 4th printing. Academic, LondonGoogle Scholar
  30. Gauss CF (1822) Allgemeine Auflösung der Aufgabe, die Teile einer gegebenen Fläche auf einer anderen gegebenen Fläche so abzubilden, daß die Abbildung dem Abgebildeten in den kleinsten Teilen ähnlich wird, 1822, Abhandlungen Königl. Gesellschaft der Wissenschaften zu Göttingen, Bd. IV, pp 189–216, Göttingen 1838Google Scholar
  31. Gauss CF (1844) Untersuchungen über Gegenstände der höheren Geodäsie, erste Abhandlung, Abhandlungen der Königl. Gesellschaft der Wissenschaften zu Göttingen, Bd. 2 (1844), Ges. Werke IV, pp 259–334, Göttingen 1880Google Scholar
  32. Gere JM, Weaver W (1965) Matrix algebra for engineers. D. Van Nostrand, New YorkGoogle Scholar
  33. Goenner H, Grafarend EW, You RJ (1994) Newton mechanics as geodesic flow on Maupertuis’ manifolds: the local isometric embedding into flat spaces. Manuscripta Geodaetica 19:339–345Google Scholar
  34. Grafarend EW (1995) The optimal universal Mercator projection. Manuscripta Geodaetica 20:421–468Google Scholar
  35. Grafarend EW, Syffus R (1998a) The optimal mercator projection and the optimal polycylindric projection of conformal type – case study Indonesia. J Geod 72:251–258CrossRefMATHGoogle Scholar
  36. Grafarend EW, Syffus R (1998b) The solution of the Korn-Lichtenstein equations of conformal mapping: the direct generation of ellipsoidal Gauss-Krueger conformal coordinates or the transverse mercator projection. J Geod 72:282–293CrossRefMATHGoogle Scholar
  37. Grafarend EW, Krumm F (2006) Map projections, cartographic informationsystems, pp 713, Springer, Berlin/New YorkGoogle Scholar
  38. Grafarend EW, You RJ, Syffus R (2014) Map projections, cartographic information systems, second ed, vol 1: pp 413, vol 2: pp 510, Berlin/New YorkGoogle Scholar
  39. Green G (1839) On the laws of reflection and refraction of light at the common surface of two non-crystallized media. Trans Camb Philos Soc 7:1–24Google Scholar
  40. Hedrick ER, Ingold L (1925a) Analytic functions in three dimensions. Trans Am Math Soc 27: 551–555MathSciNetCrossRefMATHGoogle Scholar
  41. Hedrick ER, Ingold L (1925b) The Beltrami equations in three dimensions. Trans Am Math Soc 27:556–562MathSciNetMATHGoogle Scholar
  42. Hencky H (1928) Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Zeitschrift f techn Physik 9:215–220, 457Google Scholar
  43. Heitz S (1988) Coordinates in geodesy. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  44. Higham NJ (1986) Computing the polar decomposition. SIAM J Sci Stat Comput 7:1160–1174MathSciNetCrossRefMATHGoogle Scholar
  45. Jacobi CGJ (1839) Note von der geodätischen Linie auf einem Ellipsoid und den verschiedenen Anwendungen einer merkwrdigen analytischen Substitution. Crelles J 19:309–313MathSciNetCrossRefMATHGoogle Scholar
  46. Karni Z, Reiner M (1960) Measures of deformation in the strained and in the unstrained state. Bull Res Counc Isr 8c 89. JerusalemGoogle Scholar
  47. Kavrajski VV (1958) Ausgewählte Werke, Mathematische Kartographie, Allgemeine Theorie der kartographischen Abbildungen, Kegel-und Zylinderabbildungen, ihre Anwendungen (russ.) GS VMP, MoskauGoogle Scholar
  48. Kenney C, Laub AJ (1991) Polar decomposition and matrix sign function condition estimates. SIAM J Sci Stat Comput 12:488–504MathSciNetCrossRefMATHGoogle Scholar
  49. Klingenberg W (1982) Riemannian geometry. de Gruyter, Berlin/New YorkMATHGoogle Scholar
  50. Koenig R, Weise KH (1951) Mathematische Grundlagen der höheren Geodäsie und Kartographie, Bd. I. Springer, Berlin/Heidelberg/New YorkCrossRefMATHGoogle Scholar
  51. Korn A (1914) Zwei Anwendungen der Methode der sukzessiven Annäherungen. In: Mathematischen Abhandlungen Hermann Amandus Schwarz zu seinem fünfzigjährigen Doktorjubiläum. Springer, Berlin/Heidelberg/New York, pp 215–229Google Scholar
  52. Krueger L (1903) Bemerkungen zu C.F. Gauss: Conforme Abbildungen des Sphäroids in der Ebene, C.F. Gauss, Werke, Königl. Ges. Wiss. Göttingen Bd. IX (1903), pp 195–204Google Scholar
  53. Krueger L (1922) Zur stereographischen Projektion. P. Stankiewicz, BerlinGoogle Scholar
  54. Kuiper NH (1949) On conformally-flat spaces in the large. Ann Math 50:916–924MathSciNetCrossRefMATHGoogle Scholar
  55. Kuiper NH (1950) On compact conformally Euclidean spaces of dimension ¿ 2. Ann Math 52: 478–490MathSciNetCrossRefMATHGoogle Scholar
  56. Kulkarni RS (1969) Curvature structures and conformal transformations. J Differ Geom 4:425–451Google Scholar
  57. Kulkarni RS (1972) Conformally flat manifolds. Proc Natl Acad Sci USA 69:2675–2676CrossRefMATHGoogle Scholar
  58. Kulkarni RS, Pinkall U (eds) (1988) Conformal geometry. Vieweg, Braunschweig/WiesbadenMATHGoogle Scholar
  59. Lagrange de JL (1781) Sur la construction des cartes geographiques. Nouveaux Mémoires de l’Academie Royale des Sciences et Belles Lettres de Berlin 161–210. BerlinGoogle Scholar
  60. Lancaster GM (1969) A characterization of certain conformally Euclidean spaces of class one. Proc Am Math Soc 21:623–628MathSciNetCrossRefMATHGoogle Scholar
  61. Lancaster GM (1973) Canonical metrics for certain conformally Euclidean spaces of dimension three and codimension one. Duke Math J 40:1–8MathSciNetCrossRefMATHGoogle Scholar
  62. Lichtenstein L (1911) Beweis des Satzes, daß jedes hinreichend kleine, im wesentlichen stetig gekrümmte, singularitätenfreie Flächenstück auf einem Teil einer Ebene zusammenhängend und in den kleinsten Teilen ähnlich abgebildet werden kann. Preußische Akademie der Wissenschaften, BerlinGoogle Scholar
  63. Lichtenstein L (1916) Zur Theorie der konformen Abbildung. Konforme Abbildung nichtanalytischer, singularitätenfreier Flächenstücke auf ebene Gebiete. Anzeiger der Akademie der Wissenschaften in Krakau 2–4:192–217Google Scholar
  64. Liouville J (1850) Extension au cas de trois dimensions de la question du tracé géographique, Note VI, by G. Monge: application de l’analyse à la géométrie, 5ème èdition revue corrigèe par M. Liouville, Bachelier, ParisGoogle Scholar
  65. Macvean DB (1968) Die Elementarbeit in einem Kontinuum und die Zuordnung von Spannungs-und Verzerrungstensoren. Zeitschrift für Angewandte Mathematik und Physik 19:137–185Google Scholar
  66. Markuschewitsch AI (1955) Skizzen zur Geschichte der analytischen Funktion. Deutscher Verlag der Wissenschaften, BelinGoogle Scholar
  67. Mirsky L (1960) Symmetric gauge functions and unitary invariant norms. Q J Math 11:50–59MathSciNetCrossRefMATHGoogle Scholar
  68. Misner CW (1978) Harmonic maps as models for physical theores. Phys Rev D 18:4510–4524MathSciNetCrossRefGoogle Scholar
  69. Mitra SK, Rao CR (1968) Simultaneous reduction of a pair of quadratic forms. Sankya A 30: 312–322Google Scholar
  70. Morman KN Jr (1986) The generalized strain measure with application to nonhomogeneous deformations in rubber-like solids. J Appl Mech 53:726–728CrossRefGoogle Scholar
  71. Moore JD (1977) Conformally flat submanifolds of Euclidean space. Math Ann 225:89–97MathSciNetCrossRefMATHGoogle Scholar
  72. Mueller B (1991) Kartenprojektionen des dreiachsigen Ellipsoids, Diplomarbeit Geodätisches Institut Universität, StuttgartGoogle Scholar
  73. Newcomb RW (1960) On the simultaneous diagonalization of two semidefinite matrices. Q J Appl Math 19:144–146MathSciNetGoogle Scholar
  74. Nishikawa S (1974) Conformally flat hypersurfaces in a Euclidean space. Tohoku Math J 26:563–572MathSciNetCrossRefMATHGoogle Scholar
  75. Piola G (1836) Nuova analisi per tutte le questioni della meccanica molecolare. Memorie Mat Fis Soc Ital Sci Modena 21:155–321Google Scholar
  76. Rao CR, Mitra SK (1971) Generalized inverse of matrices and its applications. Wiley, New YorkMATHGoogle Scholar
  77. Ricci G (1918) Sulla determinazione di varieta dotate di proprietà intrinseche date a priori – note I. Rend Acc Lincei Classe Sci Ser 5, vol 19, Rome 1918Google Scholar
  78. Riemann B (1851) Grundlagen für eine allgemeine Theorie der Funktionen einer veränderlichen complexen Größe, Inauguraldissertation, GöttingenGoogle Scholar
  79. Samelson H (1969) Orientability of hypersurfaces in Rn. Proc Am Math Soc 22:301–302MathSciNetMATHGoogle Scholar
  80. Schering E (1857) Über die conforme Abbildung des Ellipsoides auf der Ebene, Göttingen 1857, Nachdruck in: Ges. Math. Werke von E. Schering, eds. R. Haussner und K. Schering, 1.Bd. Mayer und Müller Verlag, Berlin 1902Google Scholar
  81. Schmehl H (1927) Untersuchungen über ein allgemeines Erdellipsoid, Veröffentlichungen des Preußischen Geodätischen Institutes, Neue Folge Nr. 98, PotsdamGoogle Scholar
  82. Schoen R (1984) Conformal deformation of a Riemannian metric to constant scalar curvature. J Differ Geom 20:479–495MathSciNetMATHGoogle Scholar
  83. Schouten JA (1921) Über die konforme Abbildung n-dimensionaler Mannigfaltigkeiten mit quadratischer Maßbestimmung auf eine Mannigfaltigkeit mit Euklidischer Maßbestimmung. Math Z 11:58–88MathSciNetCrossRefMATHGoogle Scholar
  84. Searle SR (1982) Matrix algebra useful for statistics. Wiley, New YorkMATHGoogle Scholar
  85. Seth BR (1964a) Generalized strain measure with applications to physical problems. In: Reiner M, Abir D (eds) Second order effects in elasticity, plasticity and fluid dynamics. Pergamon Press, Oxford, pp 162–172Google Scholar
  86. Seth BR (1964b) Generalized strain and transition concepts for elastic-plastic deformation-creep and relaxation. IUTAM symposium. Pergamon Press, München, pp 383–389Google Scholar
  87. Shougen W, Shuqin Z (1991) An algorithm for Ax = (λ)Bx with symmetric and positive-definite A and B. SIAM J Matrix Anal Appl 12:654–660MathSciNetCrossRefMATHGoogle Scholar
  88. Spivak M (1979) A comprehensive introduction to differential geometry, vol 4, 2nd edn. Publish or Perish, BostonGoogle Scholar
  89. Stein EM, Weiss G (1968) Generalization of the Cauchy-Riemann equations and representations of the rotation group. Am J Math 90:163–196MathSciNetCrossRefMATHGoogle Scholar
  90. Ting TCT (1985) Determination of C 1 ∕ 2, \(C_{-1/2}\) and more general isotropic tensor functions of C. J Elast 15:319–323CrossRefMATHGoogle Scholar
  91. Tissot NA (1881) Mémoire sur la représentation des surfaces et les projections des cartes géographiques. Gauthier-Villars, ParisGoogle Scholar
  92. Truesdell C, Toupin R (1960) The classical field theories. In: Handbuch der Physik, vol III/I. Springer, BerlinCrossRefGoogle Scholar
  93. Uhlig F (1973) Simultaneous block diagonalization of two real symmetric matrices. Linear Algebra Appl 7:281–289MathSciNetCrossRefMATHGoogle Scholar
  94. Uhlig F (1976) A canonical form for a pair of real symmetric matrices that generate a nonsingurlar pencil. Linear Algebra Appl 14:189–210MathSciNetCrossRefMATHGoogle Scholar
  95. Uhlig F (1979) A recurring theorem about pairs of quadratic forms and extensions: a survey. Linear Algebra Appl 25:189–210MathSciNetCrossRefGoogle Scholar
  96. Weber H (1867) Über ein Prinzip der Abbildung der Teile einer krummen Oberfläche auf einer Ebene. Journal für die reine und angewandte Mathematik 67:229–247CrossRefMATHGoogle Scholar
  97. Weyl H (1918) Reine Infinitesimalgeometrie. Math Z 2:384–411MathSciNetCrossRefMATHGoogle Scholar
  98. Weyl H (1921) Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffassung, Nachr. Königl. Ges. Wiss. Göttingen, Math.-Phys. Klasse, GöttingenGoogle Scholar
  99. Wray T (1974) The seven aspects of a general map projection. Supplement 2, Canadian cartographer 11, monographe no.11, Cartographica. B.V. Gustell Publ./University of Toronto Press, TorontoGoogle Scholar
  100. Yano K (1970) On Riemannian manifolds admitting an infinitesimal conformal transformation. Math Z 113:205–214MathSciNetCrossRefMATHGoogle Scholar
  101. Yanushaushas AI (1982) Three-dimensional analogues of conformal mappings (in Russian). Iz da te l’stvo Nauka, NovosibirskGoogle Scholar
  102. Zadro M, Carminelli A (1966) Rapprezentazione conforme del geoide sull ellissoide internazionale. Bollettino di Geodesia e Scienze Affini 25:25–36Google Scholar
  103. Zund JD (1987) The tensorial form of the Cauchy-Riemann equations. Tensor New Ser 44: 281–290MathSciNetMATHGoogle Scholar
  104. Zund JD, Moore WA (1987) Conformal geometry, Hotine’s conjecture, and differential geodesy, Department of Mathematical Sciences, New Mexico State University, Scientific report no. 1, Las CrucesGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Geodesy and GeoinformaticsStuttgart UniversityStuttgartGermany

Personalised recommendations