GOCE: Gravitational Gradiometry in a Satellite

Living reference work entry

Abstract

Spring 2009 the satellite Gravity and steady-state Ocean Circulation Explorer (GOCE), equipped with a gravitational gradiometer, was launched by European Space Agency (ESA). Its purpose is the detailed determination of the spatial variations of the Earth’s gravitational field, with applications in oceanography, geophysics, geodesy, glaciology, and climatology. Gravitational gradients are derived from the differences between the measurements of an ensemble of three orthogonal pairs of accelerometers, located around the center of mass of the spacecraft. Gravitational gradiometry is complemented by gravity analysis from orbit perturbations. The orbits are thereby derived from uninterrupted and three-dimensional GPS tracking of GOCE. The gravitational tensor consists of the nine second-derivatives of the Earth’s gravitational potential. Due to its symmetry only six of them are independent. These six components can also be interpreted in terms of the local curvature of the field or in terms of components of the tidal field generated by the Earth inside the spacecraft. Four of the six components are measured with high precision (10− 11 s− 2 per square-root of Hz), the others are less precise. Several strategies exist for the determination of the gravity field at the Earth’s surface from the measured tensor components at altitude. The mission ended in November 2013. Until August 2012 in total 2.3 years of data were collected. They entered into ESA’s fourth release of GOCE gravity models. After August 2012 the orbit altitude was lowered in several steps by altogether 31 km in order to test the enhanced gravitational sensitivity at lower orbit heights.

Keywords

European Space Agency Geostrophic Velocity Star Sensor Height System Gravitational Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Albertella A, Rummel R (2009) On the spectral consistency of the altimetric ocean and geoid surface: a one-dimensional example. J Geod 83(9):805–815CrossRefGoogle Scholar
  2. Baur O (2007) Die Invariantendarstellung in der Satellitengradiometrie. DGK, Reihe C, Beck, MünchenGoogle Scholar
  3. Baur O, Grafarend EW (2006) High performance GOCE gravity field recovery from gravity gradient tensor invariants and kinematic orbit information. In: Flury J, Rummel R, Reigber Ch, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the earth system from space. Springer, Berlin, pp 239–254CrossRefGoogle Scholar
  4. Baur O, Cai J, Sneeuw N (2009) Spectral approaches to solving the polar gap problem. In: Flechtner F, Mandea M, Gruber Th, Rothacher M, Wickert J, Güntner A, Schöne T (eds) System earth via geodetic-geophysical space techniques. Springer, BerlinGoogle Scholar
  5. Bingham RJ, Knudsen P, Andersen O, Pail R (2011) An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys Res Lett 38:L01606. doi:10.1029/2010GL045633CrossRefGoogle Scholar
  6. Bock H, Jäggi A, Meyer U, Visser P, van den Ijssel J, van Helleputte T, Heinze M, Hugentobler U (2011) GPS-derived orbits of the GOCE satellite. J Geod 85(11):807–818CrossRefGoogle Scholar
  7. Bouman J, Visser P, Fuchs M, Broerse T, Haberkorn C, Lieb V, Schmidt M, Schrama E, van der Wal W (2013) GOCE gravity gradients and the Earth’s time varying gravity field. ESA Living Planet, EdinburghGoogle Scholar
  8. Brockmann JM, Kargoll B, Krasbutter I, Schuh WD, Wermuth M (2009) GOCE data analysis: from calibrated measurements to the global earth gravity field. In: Flechtner F, Mandea M, Gruber Th, Rothacher M, Wickert J, Güntner A, Schöne T (eds) System earth via geodetic-geophysical space techniques. Springer, BerlinGoogle Scholar
  9. Bunge H-P, Richards MA, Lithgow-Bertelloni C, Baumgardner JR, Grand SP, Romanowiez BA (1998) Time scales and heterogeneous structure in geodynamic earth models. Science 280:91–95CrossRefGoogle Scholar
  10. Carroll JJ, Savet PH (1959) Gravity difference detection. Aerosp Eng 18:44–47Google Scholar
  11. Colombo O (1989) Advanced techniques for high-resolution mapping of the gravitational field. In: Sansò F, Rummel R (eds) Theory of satellite geodesy and gravity field determination. Lecture notes in earth sciences, vol 25. Springer, Heidelberg, pp 335–369CrossRefGoogle Scholar
  12. Doornbos E, Bruinsma S, Fritsche B, Visser P, v/d Ijssel J, Teixeira Encarna J, Kern M (2013) Air density and wind retrieval using GOCE data. ESA Living Planet, EdinburghGoogle Scholar
  13. Eicker A, Mayer-Gürr T, Ilk KH, Kurtenbach E (2009) Regionally refined gravity field models from in situ satellite data. In: Flechtner F, Mandea M, Gruber Th, Rothacher M, Wickert J, Güntner A, Schöne T (eds) System earth via geodetic-geophysical space techniques. Springer, BerlinGoogle Scholar
  14. ESA (1999a) Introducing the “Living Planet” Programme-the ESA strategy for earth observation. ESA SP-1234. ESA Publication Division, ESTEC, NoordwijkGoogle Scholar
  15. ESA (1999b) Gravity field and steady-state ocean circulation mission. Reports for mission selection, SP-1233 (1). ESA Publication Division, ESTEC, Noordwijk. http://www.esa.int./livingplanet/goce
  16. ESA (2006) The changing earth-new scientific challenges for ESA’s Living Planet Programme. ESA SP-1304. ESA Publication Division, ESTEC, NoordwijkGoogle Scholar
  17. Falk G, Ruppel W (1974) Mechanik, Relativität, Gravitation. Springer, BerlinGoogle Scholar
  18. Ferraccioli F, Finn CA, Jordan TA, Bell RE, Anderson LM, Damaske D (2011) East Antarctic rifting triggers uplift in the Gamburtsev Mountains. Nature 479:388–392CrossRefGoogle Scholar
  19. Förste C, Bruinsma S, Shako R, Marty J-C, Flechtner F, Abrikosov O, Dahle C, Lemoine J-M, Neumayer H, Biancale R, Barthelmes F, König R, Balmino G (2011) EIGEN-6: a new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse, EGU2011-3242Google Scholar
  20. Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere. Oxford Science Publications, OxfordMATHGoogle Scholar
  21. Ganachaud A, Wunsch C, Kim M-Ch, Tapley B (1997) Combination of TOPEX/POSEIDON data with a hydrographic inversion for determination of the oceanic general circulation and its relation to geoid accuracy. Geophys J Int 128:708–722CrossRefGoogle Scholar
  22. Gill AE (1982) Atmosphere-ocean dynamics. Academic, New YorkGoogle Scholar
  23. Hager BH, Richards MA (1989) Long-wavelength variations in Earth’s geoid: physical models and dynamical implications. Philos Trans R Soc Lond A 328:309–327CrossRefGoogle Scholar
  24. Jäggi A (2007) Pseudo-stochastic orbit modelling of low earth satellites using the global positioning system. Geodätisch - geophysikalische Arbeiten in der Schweiz, 73Google Scholar
  25. Janjić T, Schröter J, Savcenko R, Bosch W, Albertella A, Rummel R, Klatt O (2012) Impact of combining GRACE and GOCE gravity data on ocean circulation estimates. Ocean Sci 8:65–79. doi:10.5194/os-8-65-2012CrossRefGoogle Scholar
  26. Johannessen JA, Balmino G, LeProvost C, Rummel R, Sabadini R, Sünkel H, Tscherning CC, Visser P, Woodworth P, Hughes CH, LeGrand P, Sneeuw N, Perosanz F, Aguirre-Martinez M, Rebhan H, Drinkwater MR (2003) The European gravity field and steady-state ocean circulation explorer satellite mission: its impact on geophysics. Surv Geophys 24:339–386CrossRefGoogle Scholar
  27. Kaban MK, Schwintzer P, Reigber Ch (2004) A new isostatic model of the lithosphere and gravity field. J Geod 78:368–385CrossRefGoogle Scholar
  28. Kusche J, Klees R (2002) Regularization of gravity field estimation from satellite gravity gradients. J Geod 76:359–368CrossRefGoogle Scholar
  29. LeGrand P, Minster J-F (1999) Impact of the GOCE gravity mission on ocean circulation estimates. Geophys Res Lett 26(13):1881–1884CrossRefGoogle Scholar
  30. Le Traon PY, Schaeffer P, Guinehut S, Rio MH, Hernandez F, Larnicol G, Lemoine JM (2011) Mean ocean dynamic topography from GOCE and altimetry, ESA SP 686Google Scholar
  31. Lithgow-Bertelloni C, Richards MA (1998) The dynamics of cenozoic and mesozoic plate motions. Rev Geophys 36(1):27–78CrossRefGoogle Scholar
  32. Losch M, Sloyan B, Schröter J, Sneeuw N (2002) Box inverse models, altimetry and the geoid; problems with the omission error. J Geophys Res 107(C7):15-1–15-13Google Scholar
  33. Martinec Z (2003) Green’s function solution to spherical gradiometric boundary-value problems. J Geod 77:41–49CrossRefMATHGoogle Scholar
  34. Marussi A (1985) Intrinsic geodesy. Springer, BerlinCrossRefGoogle Scholar
  35. Maximenko N, Niiler P, Rio M-H, Melnichenko O, Centurioni L, Chambers D, Zlotnicki V, Galperin B (2009) Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J Atmos Ocean Technol 26:1910–1919CrossRefGoogle Scholar
  36. Migliaccio F, Reguzzoni M, Sansò F (2004) Space-wise approach to satellite gravity field determination in the presence of colored noise. J Geod 78:304–313CrossRefGoogle Scholar
  37. Misner CW, Thorne KS, Wheeler JA (1970) Gravitation. Freeman, San FranciscoGoogle Scholar
  38. Moritz H, Hofmann-Wellenhof B (1993) Geometry, relativity, geodesy. Wichmann, KarlsruheGoogle Scholar
  39. Nutz H (2002) A unified setup of gravitational observables. Dissertation. Shaker Verlag, AachenGoogle Scholar
  40. Ohanian HC, Ruffini R (1994) Gravitation and spacetime. Norton & Comp., New YorkMATHGoogle Scholar
  41. Pail R (2014) It is all about statistics: global gravity field modelling from GOCE and complementary data. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics. Springer, HeidelbergGoogle Scholar
  42. Pail R, Plank R (2004) GOCE gravity field processing strategy. Stud Geophys Geod 48:289–309CrossRefGoogle Scholar
  43. Rummel R (1986) Satellite gradiometry. In: Sünkel H (ed) Mathematical and numerical techniques in physical geodesy. Lecture notes in earth sciences, vol 7. Springer, Berlin, pp 317–363. ISBN (Print):978-3-540-16809-6, doi:10.1007/BFb0010135Google Scholar
  44. Rummel R (1997) Spherical spectral properties of the earth’s gravitational potential and its first and second-derivatives. In: Sansò F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid. Lecture notes in earth sciences, vol 65. Springer, Berlin, pp 359–404. ISBN:3-540-62636-0CrossRefGoogle Scholar
  45. Rummel R, van Gelderen M (1992) Spectral analysis of the full gravity tensor. Geophys J Int 111:159–169CrossRefGoogle Scholar
  46. Rummel R, Balmino G, Johannessen J, Visser P, Woodworth P (2002) Dedicated gravity field missions-principles and aims. J Geodyn 33/1–2:3–20CrossRefGoogle Scholar
  47. Sampietro D, Reguzzoni M, Braitenberg C (2012) The GOCE estimated Moho beneath the Tibetan Plateau and Himalaya. In: C Rizos, P Wills (eds) Earth on the edge: science for a substainable planet, International Association of Geodesy Symposia, vol 139. Springer, pp 391–397. doi:10.1007/978-3-642-37222-3_52Google Scholar
  48. Schreiner M (1994) Tensor spherical harmonics and their application in satellite gradiometry. Dissertation, Universität KaiserslauternGoogle Scholar
  49. Stubenvoll R, Förste Ch, Abrikosov O, Kusche J (2009) GOCE and its use for a high-resolution global gravity combination model. In: Flechtner F, Mandea M, Gruber Th, Rothacher M, Wickert J, Güntner A, Schöne T (eds) System earth via geodetic-geophysical space techniques. Springer, BerlinGoogle Scholar
  50. Svehla D, Rothacher M (2004) Kinematic precise orbit determination for gravity field determination. In: Sansò F (ed) The proceedings of the international association of geodesy: a window on the future of geodesy. Springer, Berlin, pp 181–188Google Scholar
  51. Van der Meijde M, Julia J, Assumpcao M(2013) Gravity derived Moho for South America. Tectonophysics 609:456–467CrossRefGoogle Scholar
  52. Wells WC (ed) (1984) Spaceborne gravity gradiometers. NASA conference publication, vol 2305, GreenbeltGoogle Scholar
  53. Woodworth PL, Hughes CW, Bingham RJ, Gruber T(2012) Towards worthwide height system unification using ocean information. J Geodetic Sci 2(4):302–318. doi:10.2478/v10156-012-0004-8CrossRefGoogle Scholar
  54. Wunsch C, Gaposchkin EM (1980) On using satellite altimetry to determine the general circulation of the oceans with application to geoid improvement. Rev Geophys 18:725–745CrossRefGoogle Scholar
  55. Yi W, Rummel R (2014) A comparison of GOCE gravitational models with EGM2008. J Geodyn 73:14–22CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMünchenGermany

Personalised recommendations