Encyclopedia of Psychopharmacology

Living Edition
| Editors: Ian P. Stolerman, Lawrence H. Price

Dissociative Anesthetics

Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27772-6_341-2


Dissociative anesthesia is a form of anesthesia characterized by catalepsy, catatonia, analgesia, and amnesia. It does not necessarily involve loss of consciousness and thus does not always imply a state of general anesthesia. Dissociative anesthetics probably produce this state by interfering with the transmission of incoming sensory signals to the cerebral cortex and by interfering with communication between different parts of the central nervous system.

Pharmacological Properties


Most dissociative anesthetics are members of the phenyl cyclohexamine group of chemicals. Agents from this group were first used in clinical practice in the 1950s. Early experience with agents from this group, such as phencyclidine and cyclohexamine hydrochloride, showed an unacceptably high incidence of inadequate anesthesia, convulsions, and psychotic symptoms (Pender 1971). These agents never entered routine clinical practice, but phencyclidine (phenylcyclohexylpiperidine, commonly...

This is a preview of subscription content, log in to check access


  1. Aalto S, Ihalainen J, Hirvonen J, Kajander J, Scheinin H, Tanila H et al (2005) Cortical glutamate-dopamine interaction and ketamine-induced psychotic symptoms in man. Psychopharmacology (Berl ) 182(3):375–383CrossRefGoogle Scholar
  2. Bell RF, Dahl JB, Moore RA, Kalso E (2006) Perioperative ketamine for acute postoperative pain. Cochrane Database Syst Rev 1:CD004603PubMedGoogle Scholar
  3. Blonk MI, Koder BG, van den Bemt PM, Huygen FJ (2010) Use of oral ketamine in chronic pain management: a review. Eur J Pain 14(5):466–472PubMedCrossRefGoogle Scholar
  4. Corlett PR, Cambridge V, Gardner JM, Piggot JS, Turner DC, Everitt JC et al (2013) Ketamine effects on memory reconsolidation favor a learning model of delusions. PLoS One 8(6):e65088PubMedCentralPubMedCrossRefGoogle Scholar
  5. Deakin JF, Lees J, McKie S, Hallak JE, Williams SR, Dursun SM (2008) Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study. Arch Gen Psychiatry 65(2):154–164PubMedCrossRefGoogle Scholar
  6. Duman RS, Li N, Liu RJ, Duric V, Aghajanian G (2012) Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 62(1):35–41PubMedCentralPubMedCrossRefGoogle Scholar
  7. Fletcher PC, Honey GD (2006) Schizophrenia, ketamine and cannabis: evidence of overlapping memory deficits. Trends Cogn Sci 10(4):167–174PubMedCrossRefGoogle Scholar
  8. Honey GD, Corlett PR, Absalom AR, Lee M, Pomarol-Clotet E, Murray GK et al (2008) Individual differences in psychotic effects of ketamine are predicted by brain function measured under placebo. J Neurosci 28(25):6295–6303PubMedCentralPubMedCrossRefGoogle Scholar
  9. Jevtovic-Todorovic V, Absalom AR, Blomgren K, Brambrink A, Crosby G, Culley DJ et al (2013) Anaesthetic neurotoxicity and neuroplasticity: an expert group report and statement based on the BJA Salzburg Seminar. Br J Anaesth 111(2):143–151PubMedCrossRefGoogle Scholar
  10. Langsjo JW, Salmi E, Kaisti KK, Aalto S, Hinkka S, Aantaa R et al (2004) Effects of subanesthetic ketamine on regional cerebral glucose metabolism in humans. Anesthesiol 100(5):1065–1071CrossRefGoogle Scholar
  11. Langsjo JW, Maksimow A, Salmi E, Kaisti K, Aalto S, Oikonen V et al (2005) S-ketamine anesthesia increases cerebral blood flow in excess of the metabolic needs in humans. Anesthesiol 103(2):258–268CrossRefGoogle Scholar
  12. Mathews DC, Zarate CA Jr (2013) Current status of ketamine and related compounds for depression. J Clin Psychiatry 74(5):516–517PubMedCrossRefGoogle Scholar
  13. Pender JW (1971) Dissociative anesthesia. JAMA 215:1126–1130PubMedCrossRefGoogle Scholar
  14. Salmi E, Langsjo JW, Aalto S, Nagren K, Metsahonkala L, Kaisti KK et al (2005) Subanesthetic ketamine does not affect 11C-flumazenil binding in humans. Anesth Analg 101(3):722–725PubMedCrossRefGoogle Scholar
  15. Salvadore G, Cornwell BR, Sambataro F, Latov D, Colon-Rosario V, Carver F et al (2010) Anterior cingulate desynchronization and functional connectivity with the amygdala during a working memory task predict rapid antidepressant response to ketamine. Neuropsychopharmacology 35:1415–1422PubMedCentralPubMedCrossRefGoogle Scholar
  16. Sharp JW (1997) Phencyclidine (PCP) acts at sigma sites to induce c-fos gene expression. Brain Res 758(1–2):51–58PubMedCrossRefGoogle Scholar
  17. Sinner B, Graf BM (2008) Ketamine. Handb Exp Pharmacol 182:313–333PubMedCrossRefGoogle Scholar
  18. Zarate CA, Singh PJ, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA et al (2006) A randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63(8):856–864PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Anesthesiology DepartmentUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
  2. 2.Department of Anaesthesia, School of Clinical MedicineUniversity of CambridgeCambridgeUK
  3. 3.Division of Anaesthesia, School of Clinical MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK