Encyclopedia of Microfluidics and Nanofluidics

Living Edition
| Editors: Dongqing Li

Microfluidic Optical Devices

  • Barbaros CetinEmail author
  • Soheila Zeinali
  • Dongqing Li
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27758-0_940-6


Microfluidic optical devices (MOD) are the emerging technology that combines today’s microfluidics technology with the optics. However, MOD can be classified as the integration of these two technologies rather than combination of them. This integration provides a new approach for using microfluidics for control and manipulation of samples and optics for sensing. In this entry we propose a comprehensive review of emerging applications for microfluidic optical devices.


In many of the biological applications, microfluidics and optics technology have already been used in combination – microfluidics for control and manipulation of the samples and optics for sensing. Microelectromechanical systems (MEMS) and lab-on-a-chip communities try to embed optical devices into their microsystems to improve functionality of their devices. Presenting a comprehensive review of all the research in the field of microfluidic and optics integration is out the scope of this entry, but...
This is a preview of subscription content, log in to check access.


  1. 1.
    Miccio L, Memmolo P, Grilli S, Ferraro P (2012) All-optical microfluidic chips for reconfigurable dielectrophoretic trapping through SLM light induced patterning. Lab Chip 12:4449–4454CrossRefGoogle Scholar
  2. 2.
    Chabinyc ML, Caiu DT, McDonald JC, Stroock AD, Christian JF, Karger AM, Whitesides GM (2001) An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal Chem 18:4491–4498CrossRefGoogle Scholar
  3. 3.
    Mazurczyk R, Vieillard J, Bouchard A, Hannes B, Krawczyk S (2006) A novel concept of the integrated fluorescence detection system and its application in a lab-on-a-chip microdevice. Sens Actuator B 118:11–19CrossRefGoogle Scholar
  4. 4.
    Heng X, Erickson D, Baugh LR, Yaqoob Z, Sternberg PW, Psaltis D, Yang C (2006) Optofluidic microscopy—a method for implementing a high resolution optical microscope on a chip. Lab Chip 6:1274–1276CrossRefGoogle Scholar
  5. 5.
    Khosla K, Swaim JD, Knittel J, Bowen WP (2010) Yield enhancement in whispering gallery mode biosensors: microfluidics and optical forces. Journal of Modern Optics 61(5):415–418Google Scholar
  6. 6.
    Camou S, Fujita H, Fujii T (2003) PDMS 2D optical lens integrated with microfluidic channels: principle and characterization. Lab Chip 3:40–45CrossRefGoogle Scholar
  7. 7.
    Chen C-H, Tsai F, Lien V, Justis N, Lo Y-H (2007) Scattering-based cytometric detection using integrated arrayed waveguides with microfluidics. IEEE Photon Technol Lett 19(6):441–443CrossRefGoogle Scholar
  8. 8.
    Kruger J, Singh K, O’Neill A, Jackson C, Morrison A, O’Brien P (2002) Development of a microfluidic device for fluorescence activated cell sorting. J Micromech Microeng 12:486–494CrossRefGoogle Scholar
  9. 9.
    Ju Y, Song J, Geng Z, Zhang H, Wang W, Xie L, Yao W, Li Z (2012) A microfluidics cytometer for mice anemia detection. Lab Chip 12:4355–4362CrossRefGoogle Scholar
  10. 10.
    Grier DG (2003) A revolution in optical manipulation. Nature 424:21–27CrossRefGoogle Scholar
  11. 11.
    Mandal S, Ericson D (2007) Optofluidic transport in liquid core waveguiding structures. Appl Phys Lett 90(184103):1–3Google Scholar
  12. 12.
    Wang X, Chen S, Kong M, Wang Z, Costa KD, Li RA, Sun D (2011) Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 11:3656–3662CrossRefGoogle Scholar
  13. 13.
    Lafleur JP, Senkbeil S, Jensen TG, Kutter JP (2012) Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants. Lab Chip 12:4651–4656CrossRefGoogle Scholar
  14. 14.
    Kim Y, Karthikeyan K, Chirvi S, Dav DP (2009) Neuro-optical microfluidic platform to study injury and regeneration of single axons. Lab Chip 9:2576–2581CrossRefGoogle Scholar
  15. 15.
    Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentIhsan Dogramaci Bilkent UniversityAnkaraTurkey
  2. 2.Department of Mechanical EngineeringUniversity of WaterlooWaterlooCanada