Encyclopedia of Microfluidics and Nanofluidics

Living Edition
| Editors: Dongqing Li

Centrifugal Microfluidics

  • Jens Ducrée
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27758-0_203-2



Centrifugal microfluidic technologies use the inertial pseudo forces experienced in a rotating reference frame to transport and manipulate fluids, overwhelmingly liquids, through networks of microchannels and chambers on substrates which are often in the format of a disk. These density-dependent pseudo forces are the centrifugal force scaling with the square of the frequency of rotation, the Euler force which is associated with an accelerated rotational motion, and the Coriolis force acting on flows through rotating channels. Unit operations such as valving, routing, metering, and mixing often result from the interplay of the rotational forces, capillary flow control, and/or siphon-like structures. Centrifugal microfluidic systems typically comprise a polymeric substrate with the size of a compact disk incorporating a planar microchannel network and an actuation unit...

This is a preview of subscription content, log in to check access.


  1. 1.
    Schembri CT, Ostoich V, Lingane PJ, Burd TL, Buhl SN (1992) Portable simultaneous multiple analyte whole-blood analyzer point-of-care testing. Clin Chem 38(9):1665–1670Google Scholar
  2. 2.
    Madou MJ, Kellogg GJ (1998) LabCD: A centrifuge-based microfluidic platform diagnostics. In: Cohn GE, Katzir A (eds) Proceedings of the SPIE – systems & tech clinical diagnostics drug discovery, vol 3259, pp 80–93Google Scholar
  3. 3.
    Madou M, Zoval J, Jia G, Kido H, Kim J, Kim N (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628CrossRefGoogle Scholar
  4. 4.
    Gustafsson M, Hirschberg D, Palmberg C, Jörnvall H, Bergman T (2004) Integrated sample preparation and MALDI mass spectrometry on a microfluidic compact disk. Anal Chem 76(2):345–350CrossRefGoogle Scholar
  5. 5.
    Inganäs M, Dérand H, Eckersten A, Ekstrand G, Honerud AK, Jesson G, Thorsén G, Söderman T, Andersson P (2005) Integrated microfluidic compact disc device with potential use in both centralized and point-of-care laboratory settings. Clin Chem 51(10):1985–1987CrossRefGoogle Scholar
  6. 6.
    Pugia MJ, Blankenstein G, Peters RP, Profitt JA, Kadel K, Willms T, Sommer R, Kuo HH, Schulman LS (2005) Microfluidic tool box as technology platform for hand-held diagnostics. Clin Chem 51(10):1923–1932CrossRefGoogle Scholar
  7. 7.
    Steigert J, Grumann M, Brenner T, Mittenbühler K, Nann T, Rühe J, Moser I, Haeberle S, Riegger L, Riegler J, Bessler W, Zengerle R, Ducrée J (2005) Integrated sample preparation, reacting and detection on a high-frequency centrifugal microfluidic platform. J Assoc Lab Autom 10(5):331–341CrossRefGoogle Scholar
  8. 8.
    Brenner T, Glatzel T, Zengerle R, Ducrée J (2005) Frequency-dependent transversal flow control in centrifugal microfluidics. Lab Chip 5(2):146–150CrossRefGoogle Scholar
  9. 9.
    Haeberle S, Brenner T, Schlosser H-P, Zengerle R, Ducrée J (2005) Centrifugal micromixer. Chem Eng Technol 28(5):613–616CrossRefGoogle Scholar
  10. 10.
    Felton M (2003) CD simplicity. Anal Chem 75(13):302A–306AGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Biomedical Diagnostics Institute (BDI), National Centre for Sensor ResearchDublin City UniversityDublinIreland