Skip to main content

Computing with Solitons

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Solitons are localized, shape-preserving waves characterized by robust collisions. First observed as water waves by John Scott Russell (1844) in the Union Canal near Edinburgh and subsequently recreated in the laboratory, solitons arise in a variety of physical systems, as both temporal pulses which counteract dispersion and spatial beams which counteract diffraction.

Solitons with two components, vector solitons, are computationally universal due to their remarkable collision properties. In this article, we describe in detail the characteristics of Manakov solitons, a specific type of vector soliton, and their applications in computing.

Introduction

In this section, we review the basic principles of soliton theory and spotlight relevant experimental results. Interestingly, the phenomena of soliton propagation and collision occur in many physical systems despite the diversity of mechanisms that bring about their existence. For this reason, the discussion in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Integrable:

This term is generally used in more than one way and in different contexts. For the purposes of this article, a partial differential equation or system of partial differential equations is integrable if it can be solved explicitly to yield solitons (qv).

Manakov system:

A system of two cubic Schrödinger equations where the self- and cross-phase modulation terms have equal weight.

Nonlinear Schrodinger equation:

A partial differential equation that has the same form as the Schrodinger equation of quantum mechanics, with a term nonlinear in the dependent variable, and, for the purposes of this article, is interpreted classically.

Self- and cross-phase modulation:

Any terms in a nonlinear Schrödinger equation that involve nonlinear functions of the dependent variable of the equation or nonlinear functions of a dependent variable of another (coupled) equation, respectively.

Solitary wave:

A solitary wave is a wave characterized by undistorted propagation. Solitary waves do not in general maintain their shape under perturbations or collisions.

Soliton:

A soliton is a solitary wave which is also robust under perturbations and collisions.

Turing equivalent:

Capable of simulating any Turing machine, and hence by Turing’s thesis capable of performing any computation that can be carried out by a sequence of effective instructions on a finite amount of data. A machine that is Turing equivalent is therefore as powerful as any digital computer. Sometimes a device that is Turing equivalent is called “universal.”

Bibliography

  • Ablowitz MJ, Prinari B, Trubatch AD (2004) Soliton interactions in the vector nls equation. Inverse Prob 20(4):1217–1237

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Ablowitz MJ, Prinari B, Trubatch AD (2006) Discrete vector solitons: composite solitons, Yang- Baxter maps and computation. Stud Appl Math 116:97–133

    Article  MathSciNet  MATH  Google Scholar 

  • Agrawal GP (2001) Nonlinear fiber optics, 3rd edn. Academic, San Diego

    MATH  Google Scholar 

  • Anastassiou C, Segev M, Steiglitz K, Giordmaine JA, Mitchell M, Shih MF, Lan S, Martin J (1999) Energy-exchange interactions between colliding vector solitons. Phys Rev Lett 83(12):2332–2335

    Article  ADS  Google Scholar 

  • Anastassiou C, Fleischer JW, Carmon T, Segev M, Steiglitz K (2001) Information transfer via cascaded collisions of vector solitons. Opt Lett 26(19):1498–1500

    Article  ADS  Google Scholar 

  • Barad Y, Silberberg Y (1997) Phys Rev Lett 78:3290

    Article  ADS  Google Scholar 

  • Berlekamp ER, Conway JH, Guy RK (1982) Winning ways for your mathematical plays, vol 2. Academic [Harcourt Brace Jovanovich Publishers], London

    MATH  Google Scholar 

  • Cao XD, McKinstrie CJ (1993) J Opt Soc Am B 10:1202

    Article  ADS  Google Scholar 

  • Chen ZG, Segev M, Coskun TH, Christodoulides DN (1996) Observation of incoherently coupled photorefractive spatial soliton pairs. Opt Lett 21(18):1436–1438

    Article  ADS  Google Scholar 

  • Christodoulides DN, Joseph RI (1988) Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt Lett 13:794–796

    Article  ADS  Google Scholar 

  • Christodoulides DN, Singh SR, Carvalho MI, Segev M (1996) Incoherently coupled soliton pairs in biased photorefractive crystals. Appl Phys Lett 68(13):1763–1765

    Article  ADS  Google Scholar 

  • Cundiff ST, Collings BC, Akhmediev NN, Soto-Crespo JM, Bergman K, Knox WH (1999) Phys Rev Lett 82:3988

    Article  ADS  Google Scholar 

  • Fredkin E, Toffoli T (1982) Conservative logic. Int J Theor Phys 21(3/4):219–253

    Article  MathSciNet  MATH  Google Scholar 

  • Hasegawa A, Tappert F (1973) Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers 1: anomalous dispersion. Appl Phys Lett 23(3):142–144

    Article  ADS  Google Scholar 

  • Islam MN, Poole CD, Gordon JP (1989) Opt Lett 14:1011

    Article  ADS  Google Scholar 

  • Jakubowski MH, Steiglitz K, Squier R (1998) State transformations of colliding optical solitons and possible application to computation in bulk media. Phys Rev E 58(5):6752–6758

    Article  ADS  Google Scholar 

  • Kang JU, Stegeman GI, Aitchison JS, Akhmediev N (1996) Observation of Manakov spatial solitons in AlGaAs planar waveguides. Phys Rev Lett 76(20):3699–3702

    Article  ADS  Google Scholar 

  • Korolev AE, Nazarov VN, Nolan DA, Truesdale CM (2005) Opt Lett 14:132

    Article  ADS  Google Scholar 

  • Manakov SV (1973) On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Zh Eksp Teor Fiz 65(2):505–516 [Sov. Phys. JETP 38, 248 (1974)]

    ADS  Google Scholar 

  • Mano MM (1972) Computer logic design. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Menyuk CR (1987) Opt Lett 12:614

    Article  ADS  Google Scholar 

  • Menyuk CR (1988) J Opt Soc Am B 5:392

    Article  ADS  Google Scholar 

  • Menyuk CR (1989) Pulse propagation in an elliptically birefringent Kerr medium. IEEE J Quantum Electron 25(12):2674–2682

    Article  ADS  Google Scholar 

  • Mollenauer LF, Stolen RH, Gordon JP (1980) Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys Rev Lett 45(13):1095–1098

    Article  ADS  Google Scholar 

  • Nishizawa N, Goto T (2002) Opt Express 10:1151–1160

    Article  ADS  Google Scholar 

  • Radhakrishnan R, Lakshmanan M, Hietarinta J (1997) Inelastic collision and switching of coupled bright solitons in optical fibers. Phys Rev E 56(2):2213–2216

    Article  ADS  Google Scholar 

  • Rand D, Steiglitz K, Prucnal PR (2005) Signal standardization in collision-based soliton computing. Int J Unconv Comput 1:31–45

    Google Scholar 

  • Rand D, Glesk I, Bres CS, Nolan DA, Chen X, Koh J, Fleischer JW, Steiglitz K, Prucnal PR (2007) Observation of temporal vector soliton propagation and collision in birefringent fiber. Phys Rev Lett 98(5):053902

    Article  ADS  Google Scholar 

  • Russell JS (1844) Report on waves. In: Report of the 14th meeting of the British Association for the Advancement of Science. Taylor and Francis, London, pp 331–390

    Google Scholar 

  • Shih MF, Segev M (1996) Incoherent collisions between two-dimensional bright steady-state photorefractive spatial screening solitons. Opt Lett 21(19):1538–1540

    Article  ADS  Google Scholar 

  • Shor PW (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: 35th IEEE Press, Piscataway, pp 124–134

    Google Scholar 

  • Squier RK, Steiglitz K (1993) 2-d FHP lattice gasses are computation universal. Complex Syst 7:297–307

    MATH  Google Scholar 

  • Steblina VV, Buryak AV, Sammut RA, Zhou DY, Segev M, Prucnal P (2000) Stable self-guided propagation of two optical harmonics coupled by a microwave or a terahertz wave. J Opt Soc Am B 17(12):2026–2031

    Article  ADS  Google Scholar 

  • Steiglitz K (2000) Time-gated Manakov spatial solitons are computationally universal. Phys Rev E 63(1):016608

    Article  ADS  Google Scholar 

  • Steiglitz K (2001) Multistable collision cycles of Manakov spatial solitons. Phys Rev E 63(4):046607

    Article  ADS  Google Scholar 

  • Yang J (1997) Physica D 108:92–112

    Article  MathSciNet  ADS  Google Scholar 

  • Yang J (1999) Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics. Phys Rev E 59(2):2393–2405

    Article  MathSciNet  ADS  Google Scholar 

  • Zakharov VE, Shabat AB (1971) Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Zh Eksp Teor Fiz 61(1):118–134 [Sov. Phys. JETP 34, 62 (1972)]

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren Rand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Rand, D., Steiglitz, K. (2015). Computing with Solitons. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_92-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_92-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics