Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Control of Cellular Automata

  • Franco Bagnoli
  • Samira El Yacoubi
  • Raúl Rechtman
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_710-1

Glossary

Deterministic cellular automata

Discrete systems, defined on a lattice or on a graph, that evolve following the application of a deterministic function in parallel to all sites/nodes. They may constitute the discrete equivalent of partial differential equations.

Probabilistic cellular automata

Extensions of deterministic cellular automata, where the evolution rule is defined (at least partially) in probabilistic terms. They may be considered as the discrete analogous of stochastic partial differential equations.

Boolean derivatives

The extension of the derivative to Boolean functions. The derivative is one if the function varies when the variable does, and zero otherwise.

Master-slave synchronization

A kind of synchronization mechanism among replicas of a dynamical system. One replica (the master) evolves freely in time and the other (the slave) is (partially) forced to follow the master.

All-or-none or pinching synchronization

A kind of master-slave synchronization suitable...

This is a preview of subscription content, log in to check access.

Bibliography

  1. Bagnoli F (1992) Boolean derivatives and computation of cellular automata. Int J Mod Phys C 3:307.  https://doi.org/10.1142/S0129183192000257 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. Bagnoli F (1998) Cellular automata. In: Bagnoli F, Liò P, Ruffo S (eds) Dynamical modelling in biotechnologies. World Scientific, Singapore, p 3.  https://doi.org/10.1142/9789812813053_0001 Google Scholar
  3. Bagnoli F, Cecconi F (2001) Synchronization of non-chaotic dynamical systems. Phys Lett A 260:9–17.  https://doi.org/10.1016/S0375-9601(01)00154-2 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. Bagnoli F, Rechtman R (1999) Phys Rev E 59:R1307.  https://doi.org/10.1103/PhysRevE.59.R1307 ADSCrossRefGoogle Scholar
  5. Bagnoli F, Rechtman R (2006) Synchronization universality classes and stability of smooth coupled map lattices. Phys Rev E 73:026202.  https://doi.org/10.1103/PhysRevE.73.026202 ADSGoogle Scholar
  6. Bagnoli F, Boccara B, Rechtman R (2001) Nature of phase transitions in a probabilistic cellular automaton with two absorbing states. Phys Rev E 63:046116.  https://doi.org/10.1103/PhysRevE.63.046116 ADSCrossRefGoogle Scholar
  7. Bagnoli F, El Yacoubi S, Rechtman R (2010) Synchronization and control of cellular automata. In: Bandini S, Manzoni S, Umeo H, Vizzari G (eds) Cellular automata, ACRI2010, proceedings of the 9th international conference on cellular automata for research and industry, Lecture notes in computer science, vol 6350. Springer, Berlin, p 188.  https://doi.org/10.1007/978-3-642-15979-4_21
  8. Bagnoli F, Rechtman R, El Yacoubi S (2012) Control of cellular automata. Phys Rev E 86:066201.  https://doi.org/10.1103/PhysRevE.86.066201 ADSCrossRefzbMATHGoogle Scholar
  9. Bagnoli F, El Yacoubi S, Rechtman R (2017) Toward a boundary regional control problem for Boolean cellular automata. Nat Comput.  https://doi.org/10.1007/s11047-017-9626-1
  10. Bel Fekih A, El Jai A (2006) Regional analysis of a class of cellular automata models. In: El Yacoubi S, Chopard B, Bandini S (eds) Cellular automata, ACRI 2006, proceedings of the 7th international conference on cellular automata for research and industry, Lecture notes in computer science, vol 4173. Springer, Berlin, pp 48–57.  https://doi.org/10.1007/11861201_9
  11. Callier FM, Desoer CA (1991) Linear system theory. Springer, New-YorkCrossRefzbMATHGoogle Scholar
  12. Cellular Automata (2002). In: Bandini S, Chopard B, Tomassini M (eds) Proceedings of the 5th international conference ACRI2002: cellular automata for research and industry, Lectures notes in computer science, vol 2493. Springer, Berlin.  https://doi.org/10.1007/3-540-45830-1
  13. Cellular Automata (2004). In: Sloot P, Chopard B, Hoekstra A (eds) Proceedings of the 6th international conference ACRI2004: cellular automata for research and industry, Lectures notes in computer science, vol 3305. Springer, Berlin.  https://doi.org/10.1007/b102055
  14. Cellular Automata (2006). In: El Yacoubi S, Chopard B, Bandini S (eds) Proceedings of the 7th international conference ACRI2006: cellular automata for research and industry, Lectures notes in computer science, vol 4173. Springer, Berlin.  https://doi.org/10.1007/11861201
  15. Cellular Automata (2008a). In: Umeo H, Morishita S, Nishinari K, Komatsuzaki T, Bandini S (eds) Proceedings of the 8th international conference ACRI2008: cellular automata for research and industry, Lectures notes in computer science, vol 5191. Springer, Berlin.  https://doi.org/10.1007/978-3-540-79992-4
  16. Cellular Automata (2008b). In: Bandini S, Manzoni S, Umeo H, Vizzari G (eds) Proceedings of the 9th international conference ACRI2010: cellular automata for research and industry, Lectures notes in computer science, vol 6350. Springer, Berlin.  https://doi.org/10.1007/978-3-642-15979-4
  17. Cellular Automata (2012). In: Sirakoulis GC, Bandini S (eds) Proceedings of the 10th international conference ACRI2012: cellular automata for research and industry, Lectures notes in computer science, vol 7495. Springer, Berlin.  https://doi.org/10.1007/978-3-642-33350-7
  18. Cellular Automata (2014). In: Wa˛s J, Sirakoulis GC, Bandini S (eds) Proceedings of the 11th international conference ACRI2014: cellular automata for research and industry, Lectures notes in computer science, vol 8751. Springer, Berlin.  https://doi.org/10.1007/978-3-319-11520-7
  19. Cellular Automata (2016). In: El Yacoubi S, Wa˛s J, Bandini S (eds) Proceedings of the 12th international conference ACRI2014: cellular automata for research and industry, lectures notes in computer science, vol 9863. Springer, Berlin.  https://doi.org/10.1007/978-3-319-44365-2
  20. Crutchfield JP, Kaneko K (1988) Are attractors relevant to turbulence? Phys Rev Lett 60:2715.  https://doi.org/10.1103/PhysRevLett.60.2715 ADSMathSciNetCrossRefGoogle Scholar
  21. Curtain RF, Zwart H (1995) An introduction to infinite-dimensional linear systems theory. Springer, HeidelbergCrossRefzbMATHGoogle Scholar
  22. Damiani C, Serra R, Villani M, Kauffman SA, Colacci A (2011) Cell-cell interaction and diversity of emergent behaviours. IET Syst Biol 5:137.  https://doi.org/10.1049/iet-syb.2010.0039 CrossRefGoogle Scholar
  23. Deutsch A, Dormann S (2005) Cellular automaton modeling of biological pattern formation: characterization, applications, and analysis, Birkhäuser, Berlin. ISBN: 978-0-8176-4415-4Google Scholar
  24. Domany E, Kinzel W (1984) Equivalence of cellular automata to Ising models and directed percolation. Phys Rev Lett 53:311–314.  https://doi.org/10.1103/PhysRevLett.53.311 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. El Yacoubi S (2008) Mathematical method for control problems on cellular automata models. Int J Syst Sci 39(5):529–538.  https://doi.org/10.1080/00207720701847232 MathSciNetCrossRefzbMATHGoogle Scholar
  26. El Yacoubi S, El Jai A, Ammor N (2002) Regional controllability with cellular automata models. In: Bandini S, Chopard B, Tomassini M (eds) Cellular automata, ACRI2002, proceedings of the 5th international conference on cellular automata for research and industry, Lecture notes on computer sciences, vol 2493. Springer, Berlin, pp 357–367.  https://doi.org/10.1007/3-540-45830-1_34
  27. Ermentrout G, Edelstein-Keshet L (1993) Cellular automata approaches to biological modeling. J Theor Biol 160:97–133.  https://doi.org/10.1006/jtbi.1993.1007 CrossRefGoogle Scholar
  28. Kaneko K (1990) Supertransients, spatiotemporal intermittency and stability of fully developed spatiotemporal chaos. Phys Lett 149A:105.  https://doi.org/10.1016/0375-9601(90)90534-U ADSCrossRefGoogle Scholar
  29. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437.  https://doi.org/10.1016/0022-5193(69)90015-0 MathSciNetCrossRefGoogle Scholar
  30. Lee KY, Chow S, Barr RO (1972) On the control of discrete-time distributed parameter systems. Siam J Control 10(2):361–376.  https://doi.org/10.1137/0310028
  31. Lions J (1986) Controlabilité exacte des systèmes distribueés. CRAS, Série I 302:471–475zbMATHGoogle Scholar
  32. Lions J (1991) Exact controllability for distributed systems. Some trends and some problems. In: Spigler R (ed) Applied and industrial mathematics. Mathematics and its applications, vol 56. Springer, Dordrecht, pp 59–84.  https://doi.org/10.1007/978-94-009-1908-2_7 CrossRefGoogle Scholar
  33. Pecora L, Carroll T (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821.  https://doi.org/10.1103/PhysRevLett.64.821 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. Picton P (1994) Boolean neural networks. In: Introduction to neural networks. Palgrave, London, p 46.  https://doi.org/10.1007/978-1-349-13530-1_4 CrossRefGoogle Scholar
  35. Politi A, Livi R, Oppo G-L, Kapral R (1993) Unpredictable behaviour in stable systems. Europhys Lett 22:571.  https://doi.org/10.1209/0295-5075/22/8/003 ADSCrossRefGoogle Scholar
  36. Russell D (1978) Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Rev 20:639–739.  https://doi.org/10.1137/1020095 MathSciNetCrossRefzbMATHGoogle Scholar
  37. Vichniac G (1984) Boolean derivatives on cellular automata. Physica 10D:96.  https://doi.org/10.1016/0167-2789(90)90174-N ADSMathSciNetGoogle Scholar
  38. Wolfram S (1983) Statistical mechanics of cellular automata. Rev Mod Phys 55:601.  https://doi.org/10.1103/RevModPhys.55.601 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. Wolfram S (1984) Universality and complexity in cellular automata. Physica 10D:1.  https://doi.org/10.1016/0167-2789(84)90245-8 ADSMathSciNetzbMATHGoogle Scholar
  40. Zerrik E, Boutoulout A, El Jai A (2000) Actuators and regional boundary controllability for parabolic systems. Int J Syst Sci 31:73–82.  https://doi.org/10.1080/002077200291479 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Franco Bagnoli
    • 1
  • Samira El Yacoubi
    • 2
  • Raúl Rechtman
    • 3
  1. 1.Department of Physics and Astronomy and CSDCUniversity of FlorenceSesto FiorentinoItaly
  2. 2.Team Project IMAGES_ESPACE-Dev, UMR 228 Espace-Dev IRD UA UM UG URUniversity of PerpignanPerpignan cedexFrance
  3. 3.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico