Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Modelling of Pedestrian and Evacuation Dynamics

  • Mohcine Chraibi
  • Antoine Tordeux
  • Andreas Schadschneider
  • Armin Seyfried
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_705-1

Glossary

Pedestrian

A pedestrian is a person travelling on foot. In this article, other characterizations are used, depending on the context, e.g., agent or particle.

Crowd

A large group of pedestrians who have gathered together. Depending on the perspective, more specific definitions exist.

Microscopic models

Microscopic models represent each pedestrian separately with individual properties (e.g., walking velocity or route choice behavior) and his/her interactions with other individuals. Typical models that belong to this class are cellular automata and the force-based models.

Macroscopic models

Macroscopic models do not distinguish individuals. The description is based on aggregate quantities, e.g., appropriate densities. Typical models belonging to this class are fluid-dynamic approaches.

Acceleration-based models

Acceleration-based models are microscopic models defined by a system of second-order ordinary differential equations. The resulting acceleration is integrated twice to...

This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. Alahi A, Goel K, Ramanathan V, Robicquet A, Fei-Fei L, Savarese S (2016) Social lstm: human trajectory prediction in crowded spaces. In: 2016 I.E. conference on computer vision and pattern recognition (CVPR), p 961971Google Scholar
  2. Ali S, Nishino K, Manocha D, Shah M (eds) (2013) Modeling, simulation and visual analysis of crowds a multidisciplinary perspective. Springer, New YorkGoogle Scholar
  3. Andresen E, Chraibi M, Seyfried A (2018) A representation of partial spatial knowledge: a cognitive map approach for evacuation simulations. Transportmetrica/A n/a:1–34. online firstGoogle Scholar
  4. Bellomo N, Piccoli B, Tosin A (2012) Modeling crowd dynamics from a complex system viewpoint. Math Models Methods Appl Sci 22(Suppl 2):123004MathSciNetzbMATHGoogle Scholar
  5. Ben-Jacob E (1997) From snowflake formation to growth of bacterial colonies. Part II. Cooperative formation of complex colonial patterns. Contemp Phys 38:205ADSCrossRefGoogle Scholar
  6. Biham O, Middleton AA, Levine D (1992) Self-organization and a dynamical transition in traffic-flow models. Phys Rev A 46:R6124ADSCrossRefGoogle Scholar
  7. Blue VJ, Adler JL (2000) Cellular automata microsimulation of bi-directional pedestrian flows. J Transp Res Board 1678:135–141CrossRefGoogle Scholar
  8. Blue VJ, Adler JL (2002) Flow capacities from cellular automata modeling of proportional spilts of pedestrians by direction. In: Schreckenberg M, Sharma SD (eds) Pedestrian and evacuation dynamics. Springer, Berlin/HeidelbergGoogle Scholar
  9. Blythe R, Evans MR (2007) Nonequilibrium steady states of matrix product form: a solver’s guide. J Phys A 40:R333ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. Boltes M, Zhang J, Tordeux A, Schadschneider A, Seyfried A (2018) Pedestrian and evacuation dynamics: empirical results. In: Encyclopedia of complexity and system science. SpringerGoogle Scholar
  11. Bouzat S, Kuperman MN (2014) Game theory in models of pedestrian room evacuation. Phys Rev E 89:032806ADSCrossRefGoogle Scholar
  12. Burstedde C, Klauck K, Schadschneider A, Zittartz J (2001) Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295:507–525ADSzbMATHCrossRefGoogle Scholar
  13. Burstedde C, Kirchner A, Klauck K, Schadschneider A, Zittartz J (2002) Cellular automaton approach to pedestrian dynamics – applications. In: Schreckenberg M, Sharma SD (eds) Pedestrian and evacuation dynamics. Springer, Berlin/Heidelberg, pp 87–98Google Scholar
  14. Chen Y, Everett M, Liu M, How JP (2017) Socially aware motion planning with deep reinforcement learning. In: Proceedings of the 2017 I.E. international conference on intelligent robots and systems (IROS), Vancouver, British Columbia, Canada, pp 1343–1350Google Scholar
  15. Chen X, Treiber M, Kanagaraj V, Li H (2018) Social force models for pedestrian traffic – state of the art. Transp Rev 38(5):625-653CrossRefGoogle Scholar
  16. Chowdhury D, Santen L, Schadschneider A (2000) Statistical physics of vehicular traffic and some related systems. Phys Rep 329(4–6):199–329ADSMathSciNetCrossRefGoogle Scholar
  17. Chraibi M, Seyfried A, Schadschneider A (2010) Generalized centrifugal force model for pedestrian dynamics. Phys Rev E 82:046111ADSCrossRefGoogle Scholar
  18. Chrastil ER, Warren WH (2015) Active and passive spatial learning in human navigation: Acquisition of graph knowledge. J Exp Psychol Learn Mem Cogn 41:1162CrossRefGoogle Scholar
  19. Crociani L, Lämmel G, Vizzari G (2016) Multi-scale simulation for crowd management: A case study in an urban scenario. In: Autonomous agents and multiagent systems. Springer International Publishing, Cham pp 147–162CrossRefGoogle Scholar
  20. Curtis S, Best A, Manocha D (2016) Menge: a modular framework for simulating crowd movement. Collective Dyn 1(0):1–40Google Scholar
  21. Daamen W (2004) Modelling passenger flows in public transport facilities. PhD thesis, Technical University of DelftGoogle Scholar
  22. Das P, Parida M, Katiyar VK (2015) Analysis of interrelationship between pedestrian flow parameters using artificial neural network. J Mod Transp 23(4):298–309CrossRefGoogle Scholar
  23. Derrida B (1998) An exactly soluble non-equilibrium system: The asymmetric simple exclusion process. Phys Rep 301:65ADSMathSciNetCrossRefGoogle Scholar
  24. Dietrich F, Köster G (2014) Gradient navigation model for pedestrian dynamics. Phys Rev E 89:062801ADSCrossRefGoogle Scholar
  25. Dijkstra EW (1958) A note on two problems in connexion with graphs. Numer Math 1(1):269271MathSciNetGoogle Scholar
  26. Ehtamo H, Heliövaara S, Korhonen T, Hostikka S (2010) Game theoretic best-response dynamics for evacuees’ exit selection. Adv Complex Syst 13(01):113–134MathSciNetzbMATHCrossRefGoogle Scholar
  27. El Yacoubi S, Chopard B, Bandini S (eds) (2006) Cellular automata -7th international conference on cellular automata for research and industry, ACRI 2006, Perpignan, France, 2006. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  28. Filippidis L (2006) Representing the influence of signage on evacuation behavior within an evacuation model. J Fire Prot Eng 16(1):37–73CrossRefGoogle Scholar
  29. Fiorini P, Shiller Z (1998) Motion planning in dynamic environments using velocity obstacles. Int J Robot Res 17:760772CrossRefGoogle Scholar
  30. Fragkiadaki K, Levine S, Felsen P, Malik J. Recurrent network models for human dynamics. In: Proceedings of the 2015 I.E. international conference on computer vision (ICCV), ICCV ’15, Washington, DC, USA, 2015. IEEE Computer Society, pp 4346–4354Google Scholar
  31. Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier-Stokes equation. Phys Rev Lett 56:1505ADSCrossRefGoogle Scholar
  32. Fukui M, Ishibashi Y (1999a) Jamming transition in cellular automaton models for pedestrians on passageway. J Phys Soc Jpn 68:3738ADSCrossRefGoogle Scholar
  33. Fukui M, Ishibashi Y (1999b) Self-organized phase transitions in cellular automaton models for pedestrians. J Phys Soc Jpn 68:2861ADSCrossRefGoogle Scholar
  34. Galea ER (ed) (2003) Pedestrian and evacuation dynamics 2003. CMS Press, LondonGoogle Scholar
  35. Gipps PG, Marksjö B (1985) A micro-simulation model for pedestrian flows. Math Comput Simul 27:95–105CrossRefGoogle Scholar
  36. Guy S, Chhugani J, Kim C, Satish S, Lin M, Manocha D, Dubey P (2009) Clearpath: highly parallel collision avoidance for multi-agent simulation. In: Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation 2009, New Orleans, LA, USA, pp 177–187Google Scholar
  37. Guy S, Chhugani J, Curtis S, Dubey P, Lin M, D Manocha. (2010a) PLEdestrians: a least-effort approach to crowd simulation. In: Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation. Eurographics Association 2010, Madrid, Spain, pp 119–128Google Scholar
  38. Guy S, Lin M, Manocha D (2010b) Modeling collision avoidance behavior for virtual humans. In: Proceedings of the 9th international conference on autonomous agents and multiagent systems, Toronto, ON, Canada, vol 2, pp 575–582Google Scholar
  39. Helbing D (1992) A fluid-dynamic model for the movement of pedestrians. Complex Syst 6:391–415MathSciNetzbMATHGoogle Scholar
  40. Helbing D, Molnár P (1995) Social force model for pedestrian dynamics. Phys Rev E 51:4282–4286ADSCrossRefGoogle Scholar
  41. Helbing D, Farkas I, Molnár P, Vicsek T (2002) Simulation of pedestrian crowds in normal and evacuation situations. In: Schreckenberg M, Sharma SD (eds) Pedestrian and evacuation dynamics. Springer, Berlin/Heidelberg, pp 21–58Google Scholar
  42. Henderson LF (1971) The statistics of crowd fluids. Nature 229:381–383ADSCrossRefGoogle Scholar
  43. Henderson LF (1974) On the fluid mechanics of human crowd motion. Transp Res 8:509–515CrossRefGoogle Scholar
  44. Hirai K, Tarui K (1975) A simulation of the behavior of a crowd in panic. In: Proceedings of the 1975 international conference on cybernetics and society, San Francisco, pp 409–411Google Scholar
  45. Höcker M (2010) Modellierung und Simulation von Fußgängerverkehr – Entwicklung mathematischer Ansätze für Soziale Kräfte und Navigationsgraphen. PhD thesis, Fakultät für Bauingenieurwesen und Geodäsie der Gottfried Wilhelm Leibniz Universität HannoverGoogle Scholar
  46. Höcker M, Berkhahn V, Kneidl A, Borrmann A, Klein W (2010) Graph-based approaches for simulating pedestrian dynamics in building models. In: Menze E, Scherer R (eds) ECPPM 2010 – eWork and eBusiness in Architecture, Engineering and Construction, pp 389–394Google Scholar
  47. Hoogendoorn SP, Bovy PHL, Daamen W (2002) Microscopic pedestrian wayfinding and dynamics modelling. In: Pedestrian and evacuation dynamics, pp 123–154Google Scholar
  48. Hughes RL (2000) The flow of large crowds of pedestrians. Math Comput Simul 53:367–370CrossRefGoogle Scholar
  49. Hughes RL (2002) A continuum theory for the flow of pedestrians. Transp Res B 36:507–535CrossRefGoogle Scholar
  50. Hughes RL (2003) The flow of human crowds. Annu Rev Fluid Mech 35:169ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. Jian L, Lizhong Y, Daoling Z (2005) Simulation of bi-direction pedestrian movement in corridor. Physica A 354:619ADSCrossRefGoogle Scholar
  52. Kemloh Wagoum AU, Seyfried A, Holl S (2012) Modeling the dynamic route choice of pedestrians to assess the criticality of building evacuation. Adv Complex Syst 15:1250029MathSciNetCrossRefGoogle Scholar
  53. Kemloh Wagoum AU, Chraibi M, Zhang J (2015) Jupedsim: an open framework for simulating and analyzing the dynamics of pedestrians. In: 3rd Conference of Transportation Research Group of IndiaGoogle Scholar
  54. Kielar P, Biedermann D, Borrmann A (2016a) Momentumv2: a modular, extensible, and generic agent-based pedestrian behavior simulation framework. Technical report, Technical University MunichGoogle Scholar
  55. Kielar PM, Biedermann DH, Kneidl A, Borrmann A (2016b) A unified pedestrian routing model combining multiple graph-based navigation methods. In: Knoop VL, Daamen W (eds) Traffic and granular flow ’15. Springer International Publishing, Cham, pp 241–248CrossRefGoogle Scholar
  56. Kim S, Stephen G, Guy S, Liu W, Wilkie D, Lau R, Lin M, Manocha D (2014) Brvo: predicting pedestrian trajectories using velocity-space reasoning. Int J Rob Res 34:201–217CrossRefGoogle Scholar
  57. Kirchner A, Schadschneider A (2002) Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A 312:260–276ADSzbMATHCrossRefGoogle Scholar
  58. Kirchner A, Namazi A, Nishinari K, Schadschneider A (2003a) Role of conflicts in the floor field cellular automaton model for pedestrian dynamics. In: Galea (2003), p 51Google Scholar
  59. Kirchner A, Nishinari K, Schadschneider A (2003b) Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Phys Rev E 67:056122ADSCrossRefGoogle Scholar
  60. Kirchner A, Klüpfel H, Nishinari K, Schadschneider A, Schreckenberg M (2004) Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. J Stat Mech 2004(10):P10011zbMATHCrossRefGoogle Scholar
  61. Klüpfel H, Meyer-König T, Wahle J, Schreckenberg M (2000) Microscopic simulation of evacuation processes on passenger ships. In: Bandini S, Worsch T (eds) Theory and practical issues on cellular automata. Springer, Berlin/HeidelbergGoogle Scholar
  62. Kneidl A (2013) Methoden zur Abbildung menschlichen Navigationsverhaltens bei der Modellierung von Fußgängerströmen. PhD thesis, Technische Universität MünchenGoogle Scholar
  63. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th international joint conference on artificial intelligence – volume 2, IJCAI’95, San Francisco, CA, USA. Morgan Kaufmann Publishers, pp 1137–1143Google Scholar
  64. Korhonen T, Hostikka S, Heliövaara S, Ehtamo H (2010) Fds+evac: an agent based fire evacuation model. In: Klingsch WWF, Rogsch C, Schadschneider A, Schreckenberg M (eds) Pedestrian and evacuation dynamics 2008. Springer, Berlin/Heidelberg, pp 109–120zbMATHCrossRefGoogle Scholar
  65. Köster G, Treml F, Gödel M (2013) Avoiding numerical pitfalls in social force models. Phys Rev E 87:063305Google Scholar
  66. Kretz T (2007) Pedestrian traffic – simulation and experiments. PhD thesis, Universität Duisburg-EssenGoogle Scholar
  67. Kretz T (2009) Pedestrian traffic: On the quickest path. J Stat Mech: Theory Exp 2009(03):P03012CrossRefGoogle Scholar
  68. Kretz T (2015) On oscillations in the social force model. Physica A 438:272–285ADSCrossRefGoogle Scholar
  69. Kretz T, Schreckenberg M (2006) The F.A.S.T.-model. Lecture Notes in Computer Science 4173:712Google Scholar
  70. Kretz T, Lehmann K, Hofsäß I (2015) Pedestrian route choice by iterated equilibrium search. In: Chraibi M, Boltes M, Schadschneider A, Seyfried A (eds) Traffic and granular flow ’13. Springer International Publishing, Cham, pp 47–54Google Scholar
  71. Lämmel G, Klüpfel H, Nagel K (2009) Chapter 11. The MATSim network flow model for traffic simulation adapted to large-scale emergency egress and an application to the evacuation of the Indonesian City of Padang in Case of a Tsunami Warning. in Harry Timmermans (ed.) Pedestrian Behavior Emerald Publishing Limited, pp 245–265Google Scholar
  72. Lämmel G, Seyfried A, and B. Steffen (2014) Large-scale and microscopic: a fast simulation approach for urban areas. In: Transportation Research Board Annual Meeting, Washington DC, USA, pp 3814–3890Google Scholar
  73. Lo SM, Huang HC, Wang P, Yuen KK (2006) A game theory based exit selection model for evacuation. Fire Saf J 41:364CrossRefGoogle Scholar
  74. Lovas GG (1994) Modeling and simulation of pedestrian traffic flow. Transp Res B 28V:429CrossRefGoogle Scholar
  75. Løvs GG (1998) Models of wayfinding in emergency evacuations. Eur J Oper Res 105(3):371–389zbMATHCrossRefGoogle Scholar
  76. Luo L, Fu Z, Cheng H, Yang L (2018) Update schemes of multi-velocity floor field cellular automaton for pedestrian dynamics. Physica A 491:946ADSCrossRefGoogle Scholar
  77. Ma Y, Lee EWM, Yuen RKK (2016) An artificial intelligence-based approach for simulating pedestrian movement. IEEE Trans Intell Transp Syst 17(11):3159–3170CrossRefGoogle Scholar
  78. Maniccam S (2003) Traffic jamming on hexagonal lattice. Physica A 321:653ADSMathSciNetzbMATHCrossRefGoogle Scholar
  79. Maniccam S (2005) Effects of back step and update rule on congestion of mobile objects. Physica A 346:631ADSCrossRefGoogle Scholar
  80. Marconi S, Chopard B (2002) A multiparticle lattice gas automata model for a crowd. Lecture Notes in Computer Science, 2493, p 231, Springer, Berlin, HeidelbergGoogle Scholar
  81. Maury B, Venel J (2011) A discrete contact model for crowd motion. ESAIM: Math Model Numer Anal 45:145–168MathSciNetzbMATHCrossRefGoogle Scholar
  82. Maury B, Venel J, Olivier A-H, Donikian S (2008) A mathematical framework for a crowd motion model. Comptes Rendus de l’Académie des Sciences – Series I 346:1245–1250MathSciNetzbMATHGoogle Scholar
  83. Mordvintsev A, Krzhizhanovskaya V, Lees M, Sloot P (2014) Simulation of city evacuation coupled to flood dynamics. In: Pedestrian and evacuation dynamics 2012. Springer, Cham, pp 485–499Google Scholar
  84. Moussaïd M, Helbing D, Garnier S, Johansson A, Combe M, Theraulaz G (2009) Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proc R Soc B 276(1668):2755–2762CrossRefGoogle Scholar
  85. Muramatsu M, Nagatani T (2000a) Jamming transition in two-dimensional pedestrian traffic. Physica A 275:281–291ADSzbMATHCrossRefGoogle Scholar
  86. Muramatsu M, Nagatani T (2000b) Jamming transition of pedestrian traffic at crossing with open boundary conditions. Physica A 286:377–390ADSzbMATHCrossRefGoogle Scholar
  87. Muramatsu M, Irie T, Nagatani T (1999) Jamming transition in pedestrian counter flow. Physica A 267:487–498ADSCrossRefGoogle Scholar
  88. Nagai R, Nagatani T (2006) Jamming transition in counter flow of slender particles on square lattice. Physica A 366:503ADSCrossRefGoogle Scholar
  89. Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys I France 2:2221ADSCrossRefGoogle Scholar
  90. Nassar K (2011) Sign visibility for pedestrians assessed with agent-based simulation. Transp Res Rec J Transp Res Board 2264:18–26CrossRefGoogle Scholar
  91. Nowak S, Schadschneider A (2012) Quantitative analysis of pedestrian counter-flow in a cellular automaton model. Phys Rev E 85:066128ADSCrossRefGoogle Scholar
  92. Ondrej J, Pettré J (2010) A synthetic-vision based steering approach for crowd simulation. ACM Trans Graph 29:123CrossRefGoogle Scholar
  93. Paris S, Pettré J, Donikian S (2007) Pedestrian reactive navigation for crowd simulation: a predictive approach. Comput Graph Forum 26:665–674CrossRefGoogle Scholar
  94. Pipes LA (1953) An operational analysis of traffic dynamics. J Appl Phys 24(3):274–281ADSMathSciNetCrossRefGoogle Scholar
  95. Rickert M, Nagel K, Schreckenberg M, Latour A (1996) Two lane traffic simulations using cellular automata. Physica A 231:534ADSCrossRefGoogle Scholar
  96. Rio KW, Rhea CK, Warren WH (2014) Follow the leader: visual control of speed in pedestrian following. J Vis 14(2):4CrossRefGoogle Scholar
  97. Schadschneider A (2002) Cellular automaton approach to pedestrian dynamics -theory. In: Schreckenberg M, Sharma SD (eds) Pedestrian and evacuation dynamics. Springer, Berlin/Heidelberg, pp 75–86Google Scholar
  98. Schreckenberg M, Sharma SD (eds) (2002) Pedestrian and evacuation dynamics. Springer, Berlin/HeidelbergzbMATHGoogle Scholar
  99. Schultz M, Fricke H (2010) Stochastic transition model for discrete agent movements. Lecture Notes in Computer Science 6350:506Google Scholar
  100. Schütz GM (2001) Exactly solvable models for many-body systems. In: Domb C, Lebowitz JL (eds) Phase transitions and critical phenomena, vol 19. Academic, LondonGoogle Scholar
  101. Seitz M, Köster G (2012) Natural discretization of pedestrian movement in continuous space. Phys Rev E 86:046108ADSCrossRefGoogle Scholar
  102. Seitz M, Dietrich F, Köster G, Bungartz H-J (2016) The superposition principle: a conceptual perspective on pedestrian stream simulations. Collective Dyn 1:1–19Google Scholar
  103. Seyfried A, Schadschneider A (2009) Validation of ca models of pedestrian dynamics with fundamental diagrams. Cybern Syst 40:367zbMATHCrossRefGoogle Scholar
  104. Sieben A, Schumann J, Seyfried A (2017) Collective phenomena in crowds -where pedestrian dynamics need social psychology. PLoS One 12:1–19CrossRefGoogle Scholar
  105. Suma Y, Yanagisawa D, Nishinari K (2011) Anticipation effect in pedestrian dynamics: modeling and experiments. Physica A 391:248ADSCrossRefGoogle Scholar
  106. Tajima Y, Nagatani T (2002) Clogging transition of pedestrian flow in t-shaped channel. Physica A 303:239–250ADSzbMATHCrossRefGoogle Scholar
  107. Templeton A, Drury J, Philippides A (2015) From mindless masses to small groups: conceptualizing collective behavior in crowd modeling. Rev Gen Psychol 19(3):215–229CrossRefGoogle Scholar
  108. Köster G et al. (2017). VADERE, http://www.vadere.org/
  109. Tordeux A, Schadschneider A (2016) White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves. J Phys A Math Theor 49:185101ADSMathSciNetzbMATHCrossRefGoogle Scholar
  110. Tordeux A, Chraibi M, Seyfried A (2016) Collision-free speed model for pedestrian dynamics. In: Traffic and granular flow ’15, Springer, Cham pp 225–232Google Scholar
  111. Treuille A, Cooper S, Popovic Z (2006) Continuum crowds. ACM Trans Graph/SIGGRAPH 25(3):1160–1168CrossRefGoogle Scholar
  112. van den Berg J, Lin M, Manocha D (2008) Reciprocal velocity obstacles for realtime multi-agent navigation. In: 2008 I.E. international conference on robotics and automation, Pasadena, CA, USA, pp 1928–1935Google Scholar
  113. van den Berg J, Guy S, Lin M, Manocha D (2011) Reciprocal n-body collision avoidance. Robotics research: the 14th international symposium ISRR, Lucerne, Switzerland, pp 3–19Google Scholar
  114. von Sivers I, Seitz MJ, Köster G (2016) How do people search: a modelling perspective. Lecture notes in computer science. 9574:487–496Google Scholar
  115. Weidmann U. Transporttechnik der Fußgänger – Transporttechnische Eigenschaften des Fußgängerverkehrs (Literaturauswertung). Schriftenreihe des IVT 90, ETH Zürich, 3 1993. Zweite, ergänzte Auflage (in German)Google Scholar
  116. Fang W, Yang L, Fang W (2003) Simulation of bi-directional pedestrian movement using a cellular automata model. Physica A 321:633–640Google Scholar
  117. Xie H, Filippidis L, Gwynne S, Galea ER, Blackshields D, Lawrence PJ (2007) Signage legibility distances as a function of observation angle. J Fire Prot Eng 17(1):41–64CrossRefGoogle Scholar
  118. Yamamoto K, Kokubo S, Nishinari K (2007) Simulation for pedestrian dynamics by real-coded cellular automata (RCA). Physica A 379:654ADSCrossRefGoogle Scholar

Books and Reviews

  1. Chopard B, Droz M (1998) Cellular automaton modeling of physical systems. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  2. Knoop VL, Daamen W (eds) (2016) Traffic and granular flow ’15. Springer, Cham (see also previous issues of this conference series)zbMATHGoogle Scholar
  3. Schadschneider A, Pöschel T, Kühne R, Schreckenberg M, Wolf DE (eds) (2007) Traffic and granular flow ’05. Springer, BerlinGoogle Scholar
  4. Schadschneider A, Chowdhury D, Nishinari K (2010) Stochastic transport in complex systems: from molecules to vehicles. Elsevier, AmsterdamzbMATHGoogle Scholar
  5. Schreckenberg M, Sharma SD (eds) (2002) Pedestrian and evacuation dynamics. Springer, BerlinzbMATHGoogle Scholar
  6. Song W, Ma J, Fu L (eds). Pedestrian and evacuation dynamics 2016. Available from http://collective-dynamics.eu/index.php/cod/article/view/A11
  7. Still K (2013) Introduction to crowd science. CRC Press, Boca RatonGoogle Scholar
  8. Thalmann D, Raupp Musse S (2007) Crowd simulation. Springer, LondonGoogle Scholar
  9. Timmermans H (ed) (2009) Pedestrian behavior – models, data collection and applications. Emerald, BingleyGoogle Scholar
  10. Waldau N, Gattermann P, Knoflacher H, Schreckenberg M (eds) (2007) Pedestrian and evacuation dynamics ’05. Springer, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Mohcine Chraibi
    • 1
  • Antoine Tordeux
    • 2
  • Andreas Schadschneider
    • 3
  • Armin Seyfried
    • 1
    • 4
  1. 1.Institute for Advanced SimulationForschungszentrum Jülich GmbHJülichGermany
  2. 2.School of Mechanical Engineering and Safety EngineeringUniversity of WuppertalWuppertalGermany
  3. 3.Institut für Theoretische PhysikUniversität zu KölnKölnGermany
  4. 4.School of Architecture and Civil EngineeringUniversity of WuppertalWuppertalGermany