Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Tsunamis: Bayesian Probabilistic Analysis

  • Anita Grezio
  • Stefano Lorito
  • Tom Parsons
  • Jacopo Selva
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_645-1

Glossary

Aleatory variability

In the present context, it is the assumed random variability of the parameters characterizing the future hazardous events or, in other words, the random variability in the model describing the physical system under investigation.

Bayesian statistics

An approach to statistics which represents unknown quantities with probability distributions that in one interpretation represent the degree of belief that the unknown quantity takes any particular value. Data are considered fixed, and the parameters of distributions representing the state of the world or hypotheses are updated as evidences are collected.

Bias

The tendency of a measurement process or statistical estimate to over- or underestimate the value of a population parameter on average.

Conditional probability

The probability that an event will occur under the condition or given knowledge that another event occurs.

Conjugacy

In Bayesian statistics, the property of parametric families of distributions for...

Keywords

Posterior Distribution Likelihood Function Beta Distribution Tsunami Wave Epistemic Uncertainty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Aida I (1969) Numerical experiments for the tsunami propagation – the 1964 Niigata tsunami and the 1968 Tokachi-Oki tsunami. Bull Earthq Res Inst 47:673–700Google Scholar
  2. Annaka T, Satake K, Sakakiyama T, Yanagisawa K, Shuto N (2007) Logic-tree approach for probabilistic tsunami hazard analysis and its applications to the Japanese coasts. Pure Appl Geophys 164:577–592ADSCrossRefGoogle Scholar
  3. Blaser L, Ohrnberger M, Riggelsen C, Babeyko A, Scherbaum F (2011) Bayesian network for tsunami early warning. Geophys J Int 185(3):1431–1443. doi:10.1111/j.1365-246X.2011.05020.xADSCrossRefGoogle Scholar
  4. Box GEP, Tiao GC (1992) Bayesian inference in statistical analysis, Wiley classics library. Wiley, New YorkCrossRefzbMATHGoogle Scholar
  5. Burbidge D, Cummins PR, Mleczko R, Thio HK (2008) A probabilistic tsunami hazard assessment for Western Australia. Pure Appl Geophys. doi:10.1007/S00024-008-0421-XGoogle Scholar
  6. Castello B, Olivieri M, Selvaggi G (2007) Local and duration magnitude determination for the Italian earthquake catalogue (1981–2002). Bull Seismol Soc Am 97:128–139CrossRefGoogle Scholar
  7. Congdon P (2006) Bayesian statistical modelling, Wiley series in probability and statistics. Wiley, Chichester, p 529CrossRefzbMATHGoogle Scholar
  8. Davies G, Griffin J, Løvholt F, Glymsdal S, Harbitz C, Thio HK, Lorito S, Basili R, Selva J, Geist E, Baptista MA (2016) A global probabilistic tsunami hazard assessment from earthquake sources, Accepted Manuscript, “Tsunamis: Geology, Hazards and Risks”. GSL Special PublicationsGoogle Scholar
  9. Draper D (2009) Bayesian statistics, Encyclopedia of complexity and earth system science. Springer, New York, pp 445–476Google Scholar
  10. Favalli M, Boschi E, Mazzarini F, Pareschi MT (2009) Seismic and landslide source of the 1908 Straits of Messina tsunami (Sicily, Italy). Geophys Res Lett 36:L16304. doi:10.1029/2009GL039135ADSCrossRefGoogle Scholar
  11. Geist EL (2002) Complex earthquake rupture and local tsunamis. J Geophys Res 107:ESE2–1–ESE 2–16CrossRefGoogle Scholar
  12. Geist EL, Lynett PJ (2014) Source processes for the probabilistic assessment of tsunami hazards. Oceanography 27(2):86–93. doi:10.5670/oceanog.2014.43CrossRefGoogle Scholar
  13. Geist EL, Parsons T (2006) Probabilistic analysis of tsunami hazards. Nat Hazards 37:277–314. doi:10.1007/s11069-005-4646-zCrossRefGoogle Scholar
  14. Geist EL, Parsons T (2010) Estimating the empirical probability of submarine landslide occurrence. In: Mosher DC et al (eds) Submarine mass movements and their consequences, Advances in natural and technological hazards research, vol 28. Springer, DordrechtGoogle Scholar
  15. Geist EL, Ten Brink US, Gove M (2014) A framework for the probabilistic analysis of meteotsunamis. Nat Hazards 74:123–142. doi:10.1007/S11069-014-1294-1CrossRefGoogle Scholar
  16. Gelman A, Carlin JB, Stern HS, Rubin DB (2013) Bayesian data analysis. Chapman & Hall/CRC Press, Boca Raton/London/New YorkzbMATHGoogle Scholar
  17. Gonzalez FI, Geist EL, Jaffe B, Kanoglu U, Mofjeld H, Synolakis CE, Titov VV, Arcas D, Bellomo D, Carlton D, Horning T, Johnson J, Newman J, Parsons T, Peters R, Peterson C, Priest G, Venturato A, Weber J, Wong F, Yalciner A (2009) Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic source. J Geophys Res 114:C11023. doi:10.1029/2008JC005132ADSCrossRefGoogle Scholar
  18. Gregory P (2005) Bayesian logical data analysis for the physical sciences. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  19. Grezio A, Marzocchi W, Sandri L, Gasparini P (2010) A Bayesian procedure for probabilistic tsunami hazard assessment. Nat Hazards 53:159–174. doi:10.1007/s11069-009- 9418-8CrossRefGoogle Scholar
  20. Grezio A, Marzocchi W, Sandri L, Argnani A, Gasparini P (2012) Probabilistic tsunami hazard assessment for Messina Strait Area (Sicily – Italy). Nat Hazards. doi:10.1007/s11069-012-0246-xGoogle Scholar
  21. Grezio A, Tonini R, Sandri L, Pierdominici S, Selva J (2015) A methodology for a comprehensive probabilistic tsunami hazard assessment: multiple sources and short-term interactions. J Mar Sci Eng 3:23–51. doi:10.3390/jmse3010023CrossRefGoogle Scholar
  22. Grilli ST, Watts P (2005) Tsunami generation by submarine mass failure, I: modeling, experimental validation, and sensitivity analyses. J Waterw Port Coast Ocean Eng 131:283–297CrossRefGoogle Scholar
  23. Gutenberg B, Richter C (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188Google Scholar
  24. Heidarzadeh M, Kijko A (2011) A probabilistic tsunami hazard assessment for the Makran Subduction Zone at the Northwestern Indian Ocean. Nat Hazards 56:577–593CrossRefGoogle Scholar
  25. Hoechner A, Babeyko AY, Zamora N (2016) Probabilistic tsunami hazard assessment for the Makran region with focus on maximum magnitude assumption. Nat Hazards Earth Syst Sci 16:1339–1350. doi:10.5194/nhess-16-1339-2016ADSCrossRefGoogle Scholar
  26. Horspool N, Pranantyo I, Griffin J, Latief H, Natawidjaja DH, Kongko W, Cipta A, Bustaman B, Anugrah SD, Thio HK (2014) A probabilistic tsunami hazard assessment for Indonesia. Nat Hazards Earth Syst Sci 14:3105–3122. doi:10.5194/nhess-14-3105-2014ADSCrossRefGoogle Scholar
  27. Jaynes ET (2003) In: Larry Bretthorst G (ed) Probability theory the logic of science. Cambridge University Press, Cambridge/New York, p 727CrossRefGoogle Scholar
  28. Kagan YY (2002a) Seismic moment distribution revisited: I, statistical results. Geophys J Int 148:520–541ADSCrossRefGoogle Scholar
  29. Kagan YY (2002b) Seismic moment distribution revisited: II, moment conservation principle. Geophys J Int 149:731–754ADSCrossRefGoogle Scholar
  30. Kagan YY, Jackson DD (2000) Probabilistic forecasting of earthquakes. Geophys J Int 143:438–453ADSCrossRefGoogle Scholar
  31. Knighton J, Bastidas LA (2015) A proposed probabilistic seismic tsunami hazard analysis methodology. Nat Hazards. doi:10.1007/s11069-015-1741-7Google Scholar
  32. Lane EM, Gillibrand PA, Wang X, Power W (2013) A probabilistic tsunami hazard study of the Auckland Region, part II: inundation modelling and hazard assessment. Pure Appl Geophys 170:1635–1646. doi:10.1007/s00024-012-0538-9ADSCrossRefGoogle Scholar
  33. Lay T (2015) The surge of great earthquakes from 2004 to 2014. Earth Planet Sci Lett Invited Front Pap 409:133–146. doi:10.1016/j.epsl.2014.10.047ADSCrossRefGoogle Scholar
  34. Lindley DV (2000) The philosophy of statistics. Statistician 49:293–337Google Scholar
  35. Lorito S, Romano F, Lay T (2016) Tsunamigenic earthquakes (2004–2013): source processes from data inversion. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, New York. doi:10.1007/978-3-642-27737-5_641-1Google Scholar
  36. Lorito S, Selva J, Basili R, Romano F, Tiberti MM, Piatanesi A (2015) Probabilistic hazard for seismically induced tsunamis: accuracy and feasibility of inundation maps. Geophys J Int 200(1):574–588. doi:10.1093/gji/ggu408ADSCrossRefGoogle Scholar
  37. Maramai A, Graziani L, Alessio G, Burrato P, Colini L, Cucci L, Nappi R, Nardi A, Vilardo G (2005a) Near- and far field survey report of the 30 December 2002 Stromboli (Southern Italy) tsunami. Mar Geol 215(93):106Google Scholar
  38. Maramai A, Graziani L, Tinti S (2005b) Tsunami in the Aeolian Islands (Southern Italy): a review. Mar Geol 215(11):21Google Scholar
  39. Marzocchi W, Jordan TH (2014) Testing for ontological errors in probabilistic forecasting models of natural systems. Proc Natl Acad Sci U S A 111(33):11973–11978. www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410183111/-/DCSupplemental ADSCrossRefGoogle Scholar
  40. Marzocchi W, Lombardi AM (2008) A double branching model for earthquake occurrence. J Geophys Res 113:B08317. doi:10.1029/2007JB005472 Google Scholar
  41. Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius. J Geophys Res 109:B11201. doi:10.1029/ 2004JB003155ADSCrossRefGoogle Scholar
  42. Marzocchi W, Sandri L, Selva J (2008) BET_EF: a probabilistic tool for long- and short-term eruption forecasting. Bull Volcanol 70:623–632. doi:10.1007/s00445-007-0157-yADSCrossRefGoogle Scholar
  43. Marzocchi W, Matteo T, Jacopo S (2015) Accounting for Epistemic Uncertainty in PSHA: Logic Tree and Ensemble Modeling Bulletin of the Seismological Society of America 105:2151–2159. doi:10.1785/0120140131Google Scholar
  44. Mueller C, Power W, Fraser S, Wang X (2015) Effects of rupture complexity on local tsunami inundation: implications for probabilistic tsunami hazard assessment by example. J Geophys Res Solid Earth 120:488–502. doi:10.1002/2014JB011301ADSCrossRefGoogle Scholar
  45. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154Google Scholar
  46. Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 82:1018–1040Google Scholar
  47. O’Loughlin KF, Lander JF (2003) Caribbean Tsunamis: a 500-year history from 1498–1998. Kluwer, DordrechtCrossRefGoogle Scholar
  48. Omira R, Baptista MA, Matias L (2015) Probabilistic tsunami hazard in the Northeast Atlantic from near- and far-field tectonic sources. Pure Appl Geophys 172:901–920. doi:10.1007/S00024-014-0949-X. Springer, Basel, 2014ADSCrossRefGoogle Scholar
  49. Orfanogiannaki K, Papadopoulos G (2007) Conditional probability approach of the assessment of tsunami potential: application in three Tsunamigenic Regions of the Pacific Ocean. Pure Appl Geophys 164:593–603ADSCrossRefGoogle Scholar
  50. Parsons T (2008) Monte Carlo method for determining earthquake recurrence parameters from short paleoseismic catalogs: example calculations for California. J Geophys Res 113. doi:10.1029/2007JB004998Google Scholar
  51. Parsons T, Geist EL (2008) Tsunami probability in the Caribbean Region. Pure Appl Geophys 165:2089–2116. doi:10.1007/s00024-008-0416-7ADSCrossRefGoogle Scholar
  52. Paté-Cornell M (1996) Uncertainties in risk analysis: six levels of treatment. Reliab Eng Syst Saf 54:95–111CrossRefGoogle Scholar
  53. Polet J, Kanamori H (2009) Tsunami earthquakes. In: Meyers A (ed) Encyclopedia of complexity and systems science. Springer, New York. doi:10.1007/978-0- 387-30440-3_567Google Scholar
  54. Popper KR (1983) Realism and the aim of science. Hutchinson, LondonGoogle Scholar
  55. Power W, Wang X, Lane EM, Gillibrand PA (2013) A probabilistic tsunami hazard study of the Auckland Region, part I: propagation modelling and tsunami hazard assessment at the Shoreline. Pure Appl Geophys 170:1621. doi:10.1007/s00024-012-0543-zADSCrossRefGoogle Scholar
  56. Reid RO, Bodine BR (1968) Numerical model for storm surges in Galveston Bay. J Waterw Harb Coast Eng Div 94:33–57.Google Scholar
  57. Sakai T, Takeda T, Soraoka H, Yanagisawa K, Annaka T (2006) Development of a probabilistic tsunami hazard analysis in Japan. In: Proceedings of ICONE14 international conference on nuclear engineering, Miami, 17–20 July, ICONE14-89183Google Scholar
  58. Satake K (1995) Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami. Pure Appl Geophys 144:455–470ADSCrossRefGoogle Scholar
  59. Satake K (2002) Tsunamis. In: Lee WHK, Kanimori H, Jennings PC, Kisslinger C (eds) International handbook of earthquake and engineering seismology, vol 81A. Academic, Amsterdam, pp 437–451CrossRefGoogle Scholar
  60. Selva J, Sandri L (2013) Probabilistic seismic hazard assessment: combining cornell-like approaches and data at sites through Bayesian inference. Bulletin of the Seismological Society of America 103(3):1709–1722. doi:10.1785/0120120091CrossRefGoogle Scholar
  61. Selva J, Tonini R, Molinari I, Tiberti MM, Romano F, Grezio A, Melini D, Piatanesi A, Basili R, Lorito S (2016) Quantification of source uncertainties in Seismic Probabilistic Tsunami Hazard Analysis (SPTHA). Geophys J Int 2016. doi:10.1093/gji/ggw107Google Scholar
  62. Shin JY, Chen S, Kim T-W (2015) Application of Bayesian Markov Chain Monte Carlo Method with Mixed Gumbel Distribution to Estimate Extreme Magnitude of Tsunamigenic Earthquake. KSCE J Civ Eng 19(2):366–375. doi:10.1007/s12205-015-0430-0CrossRefGoogle Scholar
  63. Shuto N (1991) Numerical simulation of tsunamis – its present and near future. Nat Hazards 4:171–191CrossRefGoogle Scholar
  64. Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1957–1962Google Scholar
  65. Sørensen MB, Spada M, Babeyko A, Wiemer S, Grünthal G (2012) Probabilistic tsunami hazard in the Mediterranean Sea. J Geophys Res 117:B01305. doi:10.1029/2010JB008169ADSCrossRefGoogle Scholar
  66. Stigler SM (1983) Who discovered Bayes Theorem? Am Stat 37:290–296zbMATHGoogle Scholar
  67. Synolakis CE (1987) The runup of solitary waves. J Fluid Mech 185:523–545ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. Suppasri A,Imamura F,Koshimura S, (2012) Probabilistic tsunami hazard analysis and risk to coastal populations in Thailand. J Earthq Tsunami 06:1250011 [27 Pages]. doi.10.1142/S179343111250011xGoogle Scholar
  69. Tanioka Y, Satake K (1996) Tsunami generation by horizontal displacement of ocean bottom. Geophys Res Lett 23:861–865ADSCrossRefGoogle Scholar
  70. Tatsumi D, Calder CA, Tomita T (2014) Bayesian near-field tsunami forecasting with uncertainty estimates. J Geophys Res Oceans 119:2201–2211. doi:10.1002/2013JC009334ADSCrossRefGoogle Scholar
  71. Thio HK Somerville P, Polet J (2010) Probabilistic tsunami hazard in California, PEER Report 2010/108 Pacific Earthquake Engineering Research CenterGoogle Scholar
  72. Thio HK, Li W (2015) Probabilistic tsunami hazard analysis of the Cascadia Subduction Zone and the role of epistemic uncertainties and aleatory variability. In: 11th Canadian conference on earthquake engineering, Victoria, pp 21–24Google Scholar
  73. Tinti S, Argnani A, Zaniboni F, Pagnoni G, Armigliato A (2007) Tsunamigenic potential of recently mapped submarine mass movements offshore eastern Sicily (Italy): numerical simulations and implications for the 1693 tsunami. IASPEI – JSS002 – abstract n. 8235 IUGG XXIV General Assembly, Perugia, 2–13 July 2007Google Scholar
  74. Tinti S, Armigliato A, Tonini R, Maramai A, Graziani L (2005) Assessing the hazard related to tsunamis of tectonic origin: a hybrid statistical-deterministic method applied to Southern Italy Coasts. ISET J Earthq Tech 42:189–201Google Scholar
  75. Tinti S, Maramai A, Graziani L (2004) The new catalogue of Italian Tsunamis. Nat Hazards 33(439):465Google Scholar
  76. TPSWG Tsunami Pilot Study Working Group, 2006. Seaside, Oregon tsunami pilot study – modernization of FEMA flood hazard maps. NOAA OAR Special Report, NOAA/OAR/PMEL, Seattle, 94 pp. + 7 appendicesGoogle Scholar
  77. Vannucci G, Gasperini P (2004) The new release of the database of Earthquake Mechanisms of the Mediterranean Area (EMMA2). Ann Geophys 47(Suppl):307–334Google Scholar
  78. Watts P, Grilli ST, Tappin D, Fryer GJ (2005) Tsunami generation by submarine mass failure, II: predictive equations and case studies. J Waterw Port Coast Ocean Eng 131:298–310CrossRefGoogle Scholar
  79. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull Seismol Soc Am 84:974–1002Google Scholar
  80. Yadav RBS, Tsapanos TM, Tripathi JN, Chopra S (2013) An evaluation of tsunami hazard using Bayesian approach in the Indian Ocean. Tectonophysics 593:172–182ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Anita Grezio
    • 1
  • Stefano Lorito
    • 2
  • Tom Parsons
    • 3
  • Jacopo Selva
    • 1
  1. 1.Istituto Nazionale di Geofisica e VulcanologiaBolognaItaly
  2. 2.Istituto Nazionale di Geofisica e VulcanologiaRomaItaly
  3. 3.USGS MS-999Menlo ParkUSA