Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Cellular Automaton Modeling of Tumor Invasion

  • Haralambos HatzikirouEmail author
  • Georg Breier
  • Andreas Deutsch
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-3-642-27737-5_60-6
  • 3 Downloads

Glossary

Cadherins

Important class of transmembrane proteins. They play a significant role in cell-cell adhesion, ensuring that cells within tissues are bound together.

Chemotaxis

Motion response to chemical concentration gradients of a diffusive chemical substance.

Extracellular matrix (ECM)

Components that are extracellular and composed of secreted fibrous proteins (e.g., collagen) and gel-like polysaccharides (e.g., glycosaminoglycans) binding cells and tissues together.

Fiber tracts

Bundle of nerve fibers having a common origin, termination, and function within the spinal cord and brain.

Haptotaxis

Directed motion of cells along adhesion gradients of fixed substrates in the ECM, such as integrins.

Slime trail motion

Cells secrete a nondiffusive substance; concentration gradients of the substance allow the cells to migrate toward already explored paths.

Somatic evolution

Darwinian-type evolution that occurs on soma (as opposed to germ) cells and characterizes cancer progression...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

We are grateful for generous support throughout the years by the Centre for Information Services and High Performance Computing, Dresden University of Technology, Germany.

Bibliography

  1. Alfonso JCL, Kohn-Luque A, Stylianopoulos T, Feuerhake F, Deutsch A, Hatzikirou H (2016) Why one-size-fits-all vaso-modulatory interventions fail to control glioma invasion: in silico insights Scientific Reports, 6:37283Google Scholar
  2. Alfonso JCL, Talkenberger K, Seifert M, Klink B, Hawkins-Daarud A, Hatzikirou H, Swanson K, Deutsch A (2017) The biology and mathematical modelling of glioma invasion: a review. J R Soc Interf 14(136):20170490CrossRefGoogle Scholar
  3. Anderson ARA (2005) A hybrid model of solid tumour invasion: the importance of cell adhesion. Math Med Biol 22:163–186ADSzbMATHCrossRefGoogle Scholar
  4. Anderson A, Weaver A, Cummings P, Quaranta V (2006) Tumor morphology and phenotypics evolution driven by selective pressure from the microenvironment. Cell 127:905–915CrossRefGoogle Scholar
  5. Aubert M, Badoual M, Freol S, Christov C, Grammaticos B (2006) A cellular automaton model for the migration of glioma cells. Phys Biol 3:93–100ADSCrossRefGoogle Scholar
  6. Basanta D, Hatzikirou H, Deutsch A (2008) The emergence of invasiveness in tumours: a game theoretic approach. Eur Phys J B 63:393–397ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. Basanta D, Simon M, Hatzikirou H, Deutsch A (2008) An evolutionary game theory perspective elucidates the role of glycolysis in tumour invasion. Cell Prolif. 41:980Google Scholar
  8. Bodmer W (1997) Somatic evolution of cancer cells. J R Coll Physicians Lond 31(1):82–89Google Scholar
  9. Böttger K, Hatzikirou H, Chauviere A, Deutsch A (2012) Investigation of the migration/proliferation dichotomy and its impact on avascular glioma invasion. Math Model Nat Phenom 7:105–135MathSciNetzbMATHCrossRefGoogle Scholar
  10. Böttger K, Hatzikirou H, Voss-Böhme A, Cavalcanti-Adam EA, Herrero MA, Deutsch A (2015) An emerging Allee effect is critical for tumor initiation and persistence. PLOS Comput Biol 11:1–14.  https://doi.org/10.1371/journal.pcbi.1004366CrossRefGoogle Scholar
  11. Breier G, Grosser M, Rezaei M (2014) Endothelial cadherins in cancer. Cell Tissue Res 355:523–527CrossRefGoogle Scholar
  12. Bru A, Albertos S, Subiza JL, Lopez Garcia-Asenjo J, Bru I (2003) The universal dynamics of tumor growth. Biophys J 85:2948–2961CrossRefGoogle Scholar
  13. Buder T, Deutsch A, Klink B, Voss-Böhme A (2015) Model-based evaluation of spontaneous tumor regression in pilocytic astrocytoma PLoS Comput Biol, 11(12):e1004662Google Scholar
  14. Buder T, Deutsch A, Klink B, Voss-Böhme A (2019) Patterns of tumor progression predict small and tissue-specific tumor-originating niches Front. Oncol., 8, 668Google Scholar
  15. Bussemaker HJ, Deutsch A, Geigant E (1997) Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion. Phys Rev Lett 78:5018–5021.  https://doi.org/10.1103/PhysRevLett.78.5018ADSCrossRefGoogle Scholar
  16. Chopard B, Dupuis A, Masselot A, Luthi P (2002) Cellular automata and lattice Boltzmann techniques: an approach to model and simulate complex systems. Adv Compl Syst 5(2):103–246MathSciNetzbMATHCrossRefGoogle Scholar
  17. Chopard B, Ouared R, Deutsch A, Hatzikirou H, Wolf-Gladrow D (2010) Lattice-gas cellular automaton models for biology: from fluids to cells. Acta Biotheor 58:329–340CrossRefGoogle Scholar
  18. de Franciscis S, Hatzikirou H, Deutsch A (2011) Analysis of lattice-gas cellular automaton models for tumor growth by means of fractal scaling. Acta Phys Pol B Proc Suppl 4:167CrossRefGoogle Scholar
  19. Deutsch A (1995) Towards analyzing complex swarming patterns in biological systems with the help of lattice-gas cellular automata. J Biol Syst 3:947–955CrossRefGoogle Scholar
  20. Deutsch A (2000) A new mechanism of aggregation in a lattice-gas cellular automaton model. Math Comput Model 31:35–40MathSciNetzbMATHCrossRefGoogle Scholar
  21. Deutsch A, Dormann S (2018) Cellular automaton modeling of biological pattern formation. Birkhauser, BostonzbMATHGoogle Scholar
  22. Deutsch A, Lawniczak AT (1999) Probabilistic lattice models of collective motion and aggregation: from individual to collective dynamics. Math Biosci 156:255–269MathSciNetzbMATHCrossRefGoogle Scholar
  23. Dirkse A, Golebiewska A, Buder T, Nazarov PV, Muller A, Poovathingal S, Brons NHC, Leite S, Sauvageot N, Sarkisjan D, Seyfrid M, Fritah S, Stieber D, Michelucci A, Hertel F, Herold-Mende C, Azuaje F, Skupin A, Bjerkvig R, Deutsch A, Voss-Böhme A, Niclou SP (2019) Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment Nature Communications, 10(1):1787Google Scholar
  24. Dormann S, Deutsch A (2002) Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. Silico Bio 2:393–406Google Scholar
  25. Dormann S, Deutsch A, Lawniczak AT (2001) Fourier analysis of Turing-like pattern formation in cellular automaton models. Futur Gener Comput Syst 17:901–909.  https://doi.org/10.1016/S0167-739X(00)00068-6CrossRefzbMATHGoogle Scholar
  26. Fedotov S, Iomin A (2007) Migration and proliferation dichotomy in tumor-cell invasion. Phys Rev Lett 98:118101–118104ADSCrossRefGoogle Scholar
  27. Frieboes H, Lowengrub J, Wise S, Zheng X, Macklin P, Bearer E, Cristini V (2007) Computer simulation of glioma growth and morphology. NeuroImage 37(1):59–70CrossRefGoogle Scholar
  28. Friedl P (2004) Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 16(1):14–23CrossRefGoogle Scholar
  29. Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier-Stokes equation. Phys Rev Lett 56:1505–1508ADSCrossRefGoogle Scholar
  30. Gillies RJ, Gatenby RA (2007) Hypoxia and adaptive landscapes in the evolution of carcinogenesis. Cancer Metastasis Rev 26:311–317CrossRefGoogle Scholar
  31. Graner F, Glazier J (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69:2013–2016ADSCrossRefGoogle Scholar
  32. Habib S, Molina-Paris C, Deisboeck TS (2003) Complex dynamics of tumors: modeling an emerging brain tumor system with coupled reaction-diffusion equations. Phys A 327:501–524zbMATHCrossRefGoogle Scholar
  33. Hanahan D, Weinberg R (2000) The hallmarks of cancer. Cell 100:57–70CrossRefGoogle Scholar
  34. Hanahan D, Weinberg R (2011) Hallmarks of cancer. The next generation. Cell 144:646–674CrossRefGoogle Scholar
  35. Hatzikirou H, Deutsch A (2008) Cellular automata as microscopic models of cell migration in heterogeneous environments. Curr Top Dev Biol 81:401–434CrossRefGoogle Scholar
  36. Hatzikirou H, Deutsch A, Schaller C, Simon M, Swanson K (2005) Mathematical modelling of glioblastoma tumour development: a review. Math Models Method Appl Sci 15(11):1779–1794MathSciNetzbMATHCrossRefGoogle Scholar
  37. Hatzikirou H, Brusch L, Deutsch A (2010) From cellular automaton rules to a macroscopic mean- field description. Acta Phys Pol B Proc Suppl 3:399–416Google Scholar
  38. Hatzikirou H, Basanta B, Simon M, Schaller C, Deutsch A (2012) “Go or grow”: the key to the emergence of invasion in tumor progression? Math Med Biol 29(1):49–65MathSciNetzbMATHCrossRefGoogle Scholar
  39. Hatzikirou H, Böttger K, Deutsch A (2015) Model-based comparison of cell density-dependent cell migration strategies. Math Model Nat Phenom 10:94–107MathSciNetzbMATHCrossRefGoogle Scholar
  40. Hummert S, Bohl K, Basanta D, Deutsch A, Werner S, Theißen G, Schroeter A, Schuster S (2014) Evolutionary game theory: cells as players Mol. BioSyst., 10, 3044–3065Google Scholar
  41. Jbabdi S, Mandonnet E, Duffau H, Capelle L, Swanson K, Pelegrini-Issac M, Guillevin R, Benali H (2005) Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magn Reson Med 54:616–624CrossRefGoogle Scholar
  42. Lesne A (2007) Discrete vs continuous controversy in physics. Math Struct Comput Sci 17:185–223MathSciNetzbMATHCrossRefGoogle Scholar
  43. Marchant BP, Norbury J, Perumpanani AJ (2000) Traveling shock waves arising in a model of malignant invasion. SIAM J Appl Math 60(2):263–276zbMATHGoogle Scholar
  44. Mente C, Prade I, Brusch L, Breier G, Deutsch A (2010) Parameter estimation with a novel gradient- based optimization method for biological lattice-gas cellular automaton models. J Math Bio 63:173–200MathSciNetzbMATHCrossRefGoogle Scholar
  45. Mente C, Prade I, Brusch L, Breier G, Deutsch A (2012) A lattice-gas cellular automaton model for in vitro sprouting angiogenesis. Acta Phys Pol B 5:99–115zbMATHGoogle Scholar
  46. Moreira J, Deutsch A (2002) Cellular automaton models of tumour development: a critical review. Adv Compl Syst 5:1–21zbMATHCrossRefGoogle Scholar
  47. Nava-Sedeño JM, Hatzikirou H, Klages R, Deutsch A (2017a) Cellular automaton models for time- correlated random walks: derivation and analysis. Sci Rep 7:16952ADSCrossRefGoogle Scholar
  48. Nava-Sedeño JM, Hatzikirou H, Peruani F, Deutsch A (2017b) Extracting cellular automaton rules from physical Langevin equation models for single and collective cell migration. J Math Biol 75:1075–1100MathSciNetzbMATHCrossRefGoogle Scholar
  49. Nava-Sedeño JM, Voss-Böhme A, Hatzikirou H, Deutsch A, Peruani F (2020) Modeling collective cell motion: are on- and off-lattice models equivalent? Roy. Soc. Open ScGoogle Scholar
  50. Nava-Sedeno JM, Hatzikirou H, Voss-Böhme A, Brusch L, Deutsch A, Peruani F (2020) Vectorial active matter on the lattice: emergence of polar condensates and nematic bands in an active zero-range process hal-02460291Google Scholar
  51. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23–28ADSCrossRefGoogle Scholar
  52. Patel A, Gawlinski E, Lemieux S, Gatenby R (2001) Cellular automaton model of early tumor growth and invasion: the effects of native tissue vascularity and increased anaerobic tumor metabolism. J Theor Biol 213:315–331MathSciNetCrossRefGoogle Scholar
  53. Perumpanani AJ, Sherratt JA, Norbury J, Byrne HM (1996) Biological inferences from a mathematical model of malignant invasion. Invasion Metastasis 16:209–221Google Scholar
  54. Perumpanani AJ, Sherratt JA, Norbury J, Byrne HM (1999) A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion. Phys D 126:145–159zbMATHCrossRefGoogle Scholar
  55. Preziozi L (ed) (2003) Cancer modelling and simulation. Chapman & Hall/CRC Press, Boca RatonGoogle Scholar
  56. Reher D, Klink B, Deutsch A, Voss-Böhme A (2017) Cell adhesion heterogeneity reinforces tumour cell dissemination: novel insights from a mathematical model Biology Direct, 12(1):18Google Scholar
  57. Sander LM, Deisboeck TS (2002) Growth patterns of microscopic brain tumours. Phys Rev E 66:051901ADSCrossRefGoogle Scholar
  58. Sanga S, Frieboes H, Zheng X, Gatenby R, Bearer E, Cristini V (2007) Predictive oncology: multidisciplinary, multi-scale in-silico modeling linking phenotype, morphology and growth. NeuroImage 37(1):120–134CrossRefGoogle Scholar
  59. Sherratt JA, Chaplain MAJ (2001) A new mathematical model for avascular tumour growth. J Math Biol 43:291–312MathSciNetzbMATHCrossRefGoogle Scholar
  60. Sherratt JA, Nowak MA (1992) Oncogenes, anti-oncogenes and the immune response to cancer: a mathematical model. Proc R Soc Lond B 248:261–271ADSCrossRefGoogle Scholar
  61. Smallbone K, Gatenby R, Gillies R, Maini P, Gavaghan D (2007) Metabolic changes during carcinogenesis: potential impact on invasiveness. J Theor Biol 244:703–713MathSciNetCrossRefGoogle Scholar
  62. Succi S (2001) The lattice Boltzmann equation: for fluid dynamics and beyond, series numerical mathematics and scientific computation. Oxford University Press, OxfordzbMATHGoogle Scholar
  63. Swanson KR, Alvord EC, Murray J (2002) Quantifying efficacy of chemotherapy of brain tumors (gliomas) with homogeneous and heterogeneous drug delivery. Acta Biotheor 50:223–237CrossRefGoogle Scholar
  64. Syga S, Nava-Sedeño JM, Brusch L, Deutsch A (2019) A lattice-gas cellular automaton model for discrete excitable media, chapter 15. In: Müller S, Tsuji K (eds) Spirals and vortices. Springer, Cham, pp 253–264, SpringerGoogle Scholar
  65. Talkenberger K, Cavalcanti-Adam EA, Voss-Böhme A, Deutsch A (2017) Amoeboid-mesenchymal migration plasticity promotes invasion only in complex heterogeneous microenvironments Scientific Reports, 7:9237Google Scholar
  66. Tektonidis M, Tektonidis HH, Simon M, Schaller C, Deutsch A (2011) Identification of intrinsic in vitro cellular mechanisms for glioma invasion. J Theor Bio 287:131–147zbMATHCrossRefGoogle Scholar
  67. Turner S, Sherratt JA (2002) Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. J Theor Biol 216:85–100MathSciNetCrossRefGoogle Scholar
  68. Wolgemuth CW, Hoiczyk E, Kaiser D, Oster GF (2002) How myxobacteria glide. Curr Biol 12(5):369–377CrossRefGoogle Scholar
  69. Wurzel M, Schaller C, Simon M, Deutsch A (2005) Cancer cell invasion of normal brain tissue: guided by prepattern? J Theor Med 6(1):21–31MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2019

Authors and Affiliations

  • Haralambos Hatzikirou
    • 1
    • 3
    Email author
  • Georg Breier
    • 2
  • Andreas Deutsch
    • 1
  1. 1.Center for Information Services and High Performance ComputingTechnische Universität DresdenDresdenGermany
  2. 2.Division of Medical Biology, Medical Faculty Carl Gustav CarusTechnische Universität DresdenDresdenGermany
  3. 3.Helmholtz Centre for Infection Research, Department Systems ImmunologyBraunschweigGermany