Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Tsunamis: Stochastic Models of Occurrence and Generation Mechanisms

  • Eric L. GeistEmail author
  • David D. Oglesby
  • Kenny J. Ryan
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-3-642-27737-5_595-2

Glossary

Aleatory Uncertainty

The uncertainty in seismic and tsunami hazard analysis due to inherent random variability of the quantity being measured. Aleatory uncertainties cannot be reduced by refining modeling or analytical techniques. Modified from Bormann et al. (2013).

Dynamic Earthquake Model

A model of time-dependent and spontaneous fault rupture that produces time-dependent 3-D seismic wave and displacement fields on and around the fault, including deformation of the seafloor. A friction evolution equation is specified on the fault during the rupture process.

Dynamic Tsunami Generation Model

A model of time-dependent displacement of the water column above the source region computed from the dynamic earthquake model (q.v.). It includes propagation of seismic waves in the solid earth and the water column. In contrast to static andkinematic models (q.v.), slip is not prescribed; it is computed from time-dependent stress conditions on the fault.

Moment Magnitude (Earthquake)

A...

Keywords

Tsunami models Earthquake models, stochastic process Tsunami generation Dynamic earthquake rupture Tsunami time series Tsunami occurrence Tsunami probability 
This is a preview of subscription content, log in to check access.

Notes

Acknowledgment

The authors gratefully acknowledge careful readings of the first edition of this paper and constructive comments by Martin Mai, Mark Bebbington, Kenji Satake, Tom Parsons, and the Encyclopedia Section Editor William H. K. Lee. Data used in this study include DART bottom-pressure recorder data from the event archive at NOAA’s National Data Buoy Center and digital tide gauge records from NOAA’s National Tsunami Warning Center. Analysis of tsunami records was performed in part using the Wave Analysis for Fatigue and Oceanography (WAFO) package developed at Lund University, Sweden.

Bibliography

  1. Aitkin M (2010) Statistical inference: an integrated Bayesian/likelihood approach, vol 116. CRC Press, Boca Raton, p 236Google Scholar
  2. Akaike H (1980) Likelihood and the Bayes procedure. Trab Estad Investig Oper 31:143–166MathSciNetzbMATHCrossRefGoogle Scholar
  3. Aki K, Chouet B (1975) Origin of coda waves: source, attenuation, and scattering effects. J Geophys Res 80:3322–3342ADSCrossRefGoogle Scholar
  4. Allen TI, Hayes GP (2017) Alternative rupture-scaling relationships for subduction Interface and other offshore environments. Bull Seismol Soc Am 107:1240–1253CrossRefGoogle Scholar
  5. Andrews DJ (1976) Rupture velocity of plane strain shear cracks. J Geophys Res 81:5679–5687ADSCrossRefGoogle Scholar
  6. Andrews DJ (1980) A stochastic fault model 1. Static case. J Geophys Res 85:3867–3877ADSCrossRefGoogle Scholar
  7. Andrews DJ, Barall M (2011) Specifying initial stress for dynamic heterogeneous earthquake source models. Bull Seismol Soc Am 101:2408–2417CrossRefGoogle Scholar
  8. Andrews DJ, Ma S (2016) Validating a dynamic earthquake model to produce realistic ground motion. Bull Seismol Soc Am 106:665–672CrossRefGoogle Scholar
  9. Annaka T, Satake K, Sakakiyama T, Yanagisawa K, Shuto N (2007) Logic-tree approach for probabilistic tsunami hazard analysis and it applications to the Japanese coasts. Pure Appl Geophys 164:577–592ADSCrossRefGoogle Scholar
  10. Aochi H, Fukuyama E, Matsu’ura M (2000) Selectivity of spontaneous rupture propagation on a branched fault. Geophys Res Lett 27:3635–3638ADSCrossRefGoogle Scholar
  11. Babeyko A, Hoechner A, Sobolev S (2010) Source modeling and inversion with near real-time GPS: a GITEWS perspective for Indonesia. Nat Hazards Earth Syst Sci 10:1617ADSCrossRefGoogle Scholar
  12. Bartlett MS (1978) An introduction to stochastic processes, 3rd edn. Cambridge University Press, Cambridge, p 388Google Scholar
  13. Bebbington M (2013) Volcanic eruptions: stochastic models of occurrence patterns. In: Meyers R (ed) Encyclopedia of complexity and systems science. Springer, Berlin/HeidelbergGoogle Scholar
  14. Beichelt FE, Fatti LP (2002) Stochastic processes and their applications. Taylor & Francis, LondonGoogle Scholar
  15. Blaser L, Krüger F, Ohrnberger M, Scherbaum F (2010) Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bull Seismol Soc Am 100:2914–2926CrossRefGoogle Scholar
  16. Blaser L, Ohrnberger M, Riggelsen C, Babeyko A, Scherbaum F (2011) Bayesian networks for tsunami early warning. Geophys J Int 185:1431–1443ADSCrossRefGoogle Scholar
  17. Bormann P, Aki K, Lee WHK, Schweitzer J (2013) Glossary. In: Bormann P (ed) New manual of seismological observatory practice 2 (NMSOP2). Deutsches GeoFoschungsZentrum GFZ, Potsdam, pp 1–200.  https://doi.org/10.2312/GFZ.NMSOP-2_GlossaryCrossRefGoogle Scholar
  18. Burbridge D, Cummins PR, Mleczko R, Thio HK (2008) A probabilistic tsunami hazard assessment for western Australia. Pure Appl Geophys 165:2059–2088ADSCrossRefGoogle Scholar
  19. Burroughs SM, Tebbens SF (2005) Power law scaling and probabilistic forecasting of tsunami runup heights. Pure Appl Geophys 162:331–342ADSCrossRefGoogle Scholar
  20. Candela T, Renard F, Klinger Y, Mair K, Schmittbuhl J, Brodsky EE (2012) Roughness of fault surfaces over nine decades of length scales. J Geophys Res 117.  https://doi.org/10.10029/2011JB009041
  21. Carrier GF (1970) Stochastically driven dynamical systems. J Fluid Mech 44:249–264ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. Carrier GF (1995) On-shelf tsunami generation and coastal propagation. In: Tsuchiya Y, Shuto N (eds) Tsunami: Progress in prediction, disaster prevention and warning, vol 4. Kluwer, Dordrecht, pp 1–20CrossRefGoogle Scholar
  23. Cienfuegos R, Catalán PA, Urrutia A, Benavente R, Aránguiz R, González G (2018) What can we do to forecast tsunami hazards in the near field given large epistemic uncertainty in rapid seismic source inversions? Geophys Res Lett 45:4944–4955ADSCrossRefGoogle Scholar
  24. Corral A (2009) Point-occurrence self-similarity in crackling-noise systems and in other complex systems. J Stat Mech Theor Exp 2009.  https://doi.org/10.1088/1742-5468/2009/01/P01022CrossRefGoogle Scholar
  25. Daley DJ, Vere-Jones D (2003) An introduction to the theory of point processes, vol 1, 2nd edn. Springer, New YorkGoogle Scholar
  26. Das S (1981) Three-dimensional spontaneous rupture propagation and implications for the earthquake source mechanism. Geophys J R Astron Soc 67:375–393ADSCrossRefGoogle Scholar
  27. Davies G, Horspool N, Miller V (2015) Tsunami inundation from heterogeneous earthquake slip distributions: evaluation of synthetic source models. J Geophys Res Solid Earth 120:6431–6451ADSCrossRefGoogle Scholar
  28. Day SM (1982) Three-dimensional simulation of spontaneous rupture: the effect of nonuniform prestress. Bull Seismol Soc Am 72:1881–1902Google Scholar
  29. DeDontney N, Rice JR, Dmowska R (2012) Finite element modeling of branched ruptures including off-fault plasticity. Bull Seismol Soc Am 102:541–562CrossRefGoogle Scholar
  30. Duan B, Oglesby DD (2007) Nonuniform prestress from prior earthquakes and the effect on dynamics of branched fault systems. J Geophys Res 112:B05308.  https://doi.org/10.1029/2006JB004443ADSCrossRefGoogle Scholar
  31. Fukutani Y, Suppasri A, Imamura F (2015) Stochastic analysis and uncertainty assessment of tsunami wave height using a random source parameter model that targets a Tohoku-type earthquake fault. Stoch Env Res Risk A 29:1763–1779CrossRefGoogle Scholar
  32. Geist EL (2002) Complex earthquake rupture and local tsunamis. J Geophys Res 107.  https://doi.org/10.1029/2000JB000139
  33. Geist EL (2009) Phenomenology of tsunamis: statistical properties from generation to runup. Adv Geophys 51:107–169ADSCrossRefGoogle Scholar
  34. Geist EL (2012a) Near-field tsunami edge waves and complex earthquake rupture. Pure Appl Geophys.  https://doi.org/10.1007/s00024-012-0491-7ADSCrossRefGoogle Scholar
  35. Geist EL (2012b) Phenomenology of tsunamis II: scaling, event statistics, and inter-event triggering. Adv Geophys 53:35–92ADSCrossRefGoogle Scholar
  36. Geist EL (2014) Explanation of temporal clustering of tsunami sources using the epidemic-type aftershock sequence model. Bull Seismol Soc Am 104:2091–2103CrossRefGoogle Scholar
  37. Geist EL (2016) Non-linear resonant coupling of tsunami edge waves using stochastic earthquake source models. Geophys J Int 204:878–891ADSCrossRefGoogle Scholar
  38. Geist EL (2018) Effect of dynamical phase on the resonant interaction among tsunami edge wave modes. Pure Appl Geophys 175:1341–1354ADSCrossRefGoogle Scholar
  39. Geist EL, Oglesby DD (2014) Earthquake mechanism and seafloor deformation for tsunami generation. In: Beer M, Patelli E, Kougioumtzoglou IA, Au IS-K (eds) Encyclopedia of earthquake engineering. Springer, Berlin, p 17Google Scholar
  40. Geist EL, Parsons T (2006) Probabilistic analysis of tsunami hazards. Nat Hazards 37:277–314CrossRefGoogle Scholar
  41. Geist EL, Parsons T (2008) Distribution of tsunami inter-event times. Geophys Res Lett 35:L02612.  https://doi.org/10.1029/2007GL032690ADSCrossRefGoogle Scholar
  42. Geist EL, Parsons T (2010) Estimating the empirical probability of submarine landslide occurrence. In: Mosher DC, Shipp C, Moscardelli L, Chaytor J, Baxter C, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences IV. Springer, Heidelberg, pp 377–386CrossRefGoogle Scholar
  43. Geist EL, Parsons T (2011) Assessing historical rate changes in global tsunami occurrence. Geophys J Int 187:497–509ADSCrossRefGoogle Scholar
  44. Geist EL, Parsons T (2014) Undersampling power-law size distributions: effect on the assessment of extreme natural hazards. Nat Hazards 72:565–595CrossRefGoogle Scholar
  45. Geist EL, Parsons T, ten Brink US, Lee HJ (2009) Tsunami Probability. In: Bernard EN, Robinson AR (eds) The sea, vol 15. Harvard University Press, Cambridge, pp 93–135Google Scholar
  46. Geist EL, Chaytor JD, Parsons T, ten Brink U (2013) Estimation of submarine mass failure probability from a sequence of deposits with age dates. Geosphere 9:287–298ADSCrossRefGoogle Scholar
  47. Goda K, Song J (2016) Uncertainty modeling and visualization for tsunami hazard and risk mapping: a case study for the 2011 Tohoku earthquake. Stoch Env Res Risk A 30:2271–2285CrossRefGoogle Scholar
  48. Goda K, Mai PM, Yasuda T, Mori N (2014) Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake. Earth Planets Space 66:105ADSCrossRefGoogle Scholar
  49. Goda K, Li S, Mori N, Yasuda T (2015a) Probabilistic tsunami damage assessment considering stochastic source models: application to the 2011 Tohoku earthquake. Coast Eng J 57:1550015CrossRefGoogle Scholar
  50. Goda K, Yasuda T, Mori N, Mai PM (2015b) Variability of tsunami inundation footprints considering stochastic scenarios based on a single rupture model: application to the 2011 Tohoku earthquake. J Geophys Res Oceans 120:4552–4575ADSCrossRefGoogle Scholar
  51. Goda K, Yasuda T, Mori N, Maruyama T (2016) New scaling relationships of earthquake source parameters for stochastic tsunami simulation. Coast Eng J 58:1650010-1–1650010-40CrossRefGoogle Scholar
  52. González FI, Kulikov YA (1993) Tsunami dispersion observed in the deep ocean. In: Tinti S (ed) Tsunamis in the world. Kluwer Academic Publishers, Dordrecht, pp 7–16CrossRefGoogle Scholar
  53. González FI, Geist EL, Jaffe BE, Kânoglu U, Mofjeld HO, Synolakis CE et al (2009) Probabilistic tsunami hazard assessment at seaside, Oregon for near- and far-field seismic sources. J Geophys Res 114.  https://doi.org/10.1029/2008JC005132
  54. Greenhough J, Main IG (2008) A Poisson model for earthquake frequency uncertainties in seismic hazard analysis. Geophys Res Lett 35.  https://doi.org/10.1029/2008GL035353
  55. Grezio A, Babeyko AY, Baptista AM, Behrens J, Costa A, Davies G et al (2017) Probabilistic tsunami Hazard analysis (PTHA): multiple sources and global applications. Rev Geophys 55:1158–1198ADSCrossRefGoogle Scholar
  56. Griffin JD, Pranantyo IR, Kongko W, Haunan A, Robiana R, Miller V et al (2017) Assessing tsunami hazard using heterogeneous slip models in the Mentawai Islands, Indonesia. Geol Soc Lond, Spec Publ 441:47–70CrossRefGoogle Scholar
  57. Guatteri M, Mai PM, Beroza GC (2004) A pseudo-dynamic approximation to dynamic rupture models for strong ground motion prediction. Bull Seismol Soc Am 94:2051–2063CrossRefGoogle Scholar
  58. Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188Google Scholar
  59. Harris RA, Archuleta RJ, Day SM (1991) Fault steps and the dynamic rupture process – 2-D numerical simulations of a spontaneously propagating shear fracture. Geophys Res Lett 18:893–896ADSCrossRefGoogle Scholar
  60. Hergarten S (2003) Landslides, sandpiles, and self-organized criticality. Nat Hazards Earth Syst Sci 3:505–514ADSCrossRefGoogle Scholar
  61. Hergarten S, Neugebauer HJ (1998) Self-organized criticality in a landslide model. Geophys Res Lett 25:801–804ADSCrossRefGoogle Scholar
  62. Herrero A, Bernard P (1994) A kinematic self-similar rupture process for earthquakes. Bull Seismol Soc Am 84:1216–1228Google Scholar
  63. Hisada Y (2000) A theoretical omega-square model considering the spatial variation in slip and rupture velocity. Bull Seismol Soc Am 90:387–400CrossRefGoogle Scholar
  64. Hisada Y (2001) A theoretical omega-square model considering the spatial variation in slip and rupture velocity. Part 2: case for a two-dimensional source model. Bull Seismol Soc Am 91:651–666CrossRefGoogle Scholar
  65. Hogben N (1990) Long term wave statistics. In: Le Méhauté B, Hanes DM (eds) Ocean engineering science, vol 9. Wiley, New York, pp 293–333Google Scholar
  66. Horspool N, Pranantyo I, Griffin J, Latief H, Natawidjaja DH, Kongko W et al (2014) A probabilistic tsunami hazard assessment for Indonesia. Nat Hazards Earth Syst Sci 14:3105–3122ADSCrossRefGoogle Scholar
  67. Huang NE, Tung CC, Long SR (1990) The probability structure of the ocean surface. In: Le Méhauté B, Hanes DM (eds) Ocean engineering science, vol 9. Wiley, New York, pp 335–366Google Scholar
  68. Ishimoto M, Iida K (1939) Observations of earthquakes registered with the microseismograph constructed recently. Bull Earthquake Res Inst 17:443–478Google Scholar
  69. Jha AK, Winterstein SR (2000) Nonlinear random ocean waves: prediction and comparison with data. In: Proceedings of the ETCE/OMAE2000 joint conference: energy for the new Millennium. ASME, New Orleans, pp 1–12Google Scholar
  70. Kagan YY (1973) Statistical methods in the study of seismic processes. Bull Int Stat Inst 45:437–453Google Scholar
  71. Kagan YY (1991) Seismic moment distribution. Geophys J Int 106:123–134ADSCrossRefGoogle Scholar
  72. Kagan YY (2002) Seismic moment distribution revisited: I. statistical results. Geophys J Int 148:520–541ADSCrossRefGoogle Scholar
  73. Kagan YY (2007) Why does theoretical physics fail to explain and predict earthquake occurrence? In: Bhattacharyya P, Chakrabarti BK (eds) Modelling critical and catastrophic phenomena in geoscience. Springer, Berlin, pp 303–359Google Scholar
  74. Kagan YY (2010) Statistical distributions of earthquake numbers: consequence of branching process. Geophys J Int 180:1313–1328ADSCrossRefGoogle Scholar
  75. Kagan YY, Jackson DD (2000) Probabilistic forecasting of earthquakes. Geophys J Int 143:438–453ADSCrossRefGoogle Scholar
  76. Kame N, Rice JR, Dmowska R (2003) Effects of pre-stress state and rupture velocity on dynamic fault branching. J Geophys Res 108:2265.  https://doi.org/10.1029/2002JB002189CrossRefGoogle Scholar
  77. Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82:2981–2987ADSCrossRefGoogle Scholar
  78. Kirby JT, Putrevu U, Özkan-Haller HT (1998) Evolution equations for edge waves and shear waves on longshore uniform beaches. In: Proceedings of 26th international conference on coastal engineering. ASCE, Copenhagen, pp 203–216Google Scholar
  79. Koshimura S, Hayashi Y, Munemoto K, Imamura F (2008) Effect of the emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami. Geophys Res Lett 35.  https://doi.org/10.1029/2007GL032129
  80. Kowalik Z, Horrillo J, Knight W, Logan T (2008) Kuril Islands tsunami of November 2006: 1. Impact at Crescent City by distant scattering. J Geophys Res 113.  https://doi.org/10.1029/2007JC004402
  81. Lavallée D (2008) On the random nature of earthquake sources and ground motions: a unified theory. Adv Geophys 50:427–461CrossRefGoogle Scholar
  82. Lavallée D, Liu P, Archuleta RJ (2006) Stochastic model of heterogeneity in earthquake slip spatial distributions. Geophys J Int 165:622–640ADSCrossRefGoogle Scholar
  83. Lavallée D, Miyake H, Koketsu K (2011) Stochastic model of a subduction-zone earthquake: sources and ground motions for the 2003 Tokachi-oki, Japan, earthquake. Bull Seismol Soc Am 101:1807–1821CrossRefGoogle Scholar
  84. Lay T, Kanamori H, Ammon CJ, Hutko AR, Furlong K, Rivera L (2009) The 2006-2007 Kuril Islands great earthquake sequence. J Geophys Res 114.  https://doi.org/10.1029/2008JB006280
  85. LeVeque RJ, Waagan K, González FI, Rim D, Lin G (2016) Generating random earthquake events for probabilistic tsunami Hazard assessment. Pure Appl Geophys 173:3671–3692ADSCrossRefGoogle Scholar
  86. Liu-Zeng J, Heaton TH, DiCaprio C (2005) The effect of slip variability on earthquake slip-length scaling. Geophys J Int 162:841–849ADSCrossRefGoogle Scholar
  87. Longuet-Higgins MS (1952) On the statistical distribution of the heights of sea waves. J Mar Res 11:245–266Google Scholar
  88. Lorito S, Selva J, Basili R, Romano F, Tiberti MM, Piatanesi A (2015) Probabilistic hazard for seismically induced tsunamis: accuracy and feasibility of inundation maps. Geophys J Int 200:574–588ADSCrossRefGoogle Scholar
  89. Løvholt F, Pedersen G, Bazin S, Kühn D, Bredesen RE, Harbitz C (2012) Stochastic analysis of tsunami runup due to heterogeneous coseismic slip and dispersion. J Geophys Res 117.  https://doi.org/10.1029/2011JC007616CrossRefGoogle Scholar
  90. Ma S, Beroza GC (2008) Rupture dynamics on a bimaterial interface for dipping faults. Bull Seismol Soc Am 98:1642–1658CrossRefGoogle Scholar
  91. Mai PM, Beroza GC (2002) A spatial random field model to characterize complexity in earthquake slip. J Geophys Res 107.  https://doi.org/10.1029/2001JB000588CrossRefGoogle Scholar
  92. Main I (2000) Apparent breaks in scaling in the earthquake cumulative frequency-magnitude distribution: fact or artifact? Bull Seismol Soc Am 90:86–97CrossRefGoogle Scholar
  93. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Process Landf 29:687–7111ADSCrossRefGoogle Scholar
  94. Massel SR (1996) Ocean surface waves: their physics and prediction, vol 11. World Scientific, SingaporeCrossRefGoogle Scholar
  95. McCloskey J, Antonioli A, Piatanesi A, Sieh K, Steacy S, Nalbant S et al (2008) Tsunami threat in the Indian Ocean from a future megathrust earthquake west of Sumatra. Earth Planet Sci Lett 265:61–81ADSCrossRefGoogle Scholar
  96. McKane AJ (2016) Stochastic processes. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, Berlin/Heidelberg, pp 1–22Google Scholar
  97. Meerschaert MM, Roy P, Shao Q (2012) Parameter estimation for exponentially tempered power law distributions. Commun Stat Theor Models 41:1839–1856MathSciNetzbMATHCrossRefGoogle Scholar
  98. Mei CC, Stiassnie M, Yue DK-P (2005) Theory and applications of ocean surface waves. Part 2: nonlinear aspects. World Scientific, SingaporezbMATHGoogle Scholar
  99. Mikumo T, Miyatake T (1993) Dynamic rupture processes on a dipping fault, and estimates of stress drop and strength excess from the results of waveform inversion. Geophys J Int 112:481–496ADSCrossRefGoogle Scholar
  100. Mofjeld HO, González FI, Bernard EN, Newman JC (2000) Forecasting the heights of later waves in Pacific-wide tsunamis. Nat Hazards 22:71–89CrossRefGoogle Scholar
  101. Mofjeld HO, Titov VV, González FI, Newman JC (2001) Tsunami scattering provinces in the Pacific Ocean. Geophys Res Lett 28:335–337ADSCrossRefGoogle Scholar
  102. Mueller C, Power W, Fraser S, Wang X (2015) Effects of rupture complexity on local tsunami inundation: implications for probabilistic tsunami hazard assessment by example. J Geophys Res Solid Earth 120:488–502ADSCrossRefGoogle Scholar
  103. Muraleedharan G, Rao AD, Kurup PG, Nair NU, Sinha M (2007) Modified Weibull distribution for maximum and significant wave height simulation and prediction. Coast Eng 54:630–638CrossRefGoogle Scholar
  104. Murotani S, Satake K, Fujii Y (2013) Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~9 subduction-zone earthquakes. Geophys Res Lett 40:5070–5074ADSCrossRefGoogle Scholar
  105. Ochi MK (2005) Ocean waves: the stochastic approach. Cambridge University Press, Cambridge, p 332Google Scholar
  106. Ogata Y (1988) Statistical models for earthquake occurrences and residual analysis for point processes. J Am Stat Assoc 83:9–27CrossRefGoogle Scholar
  107. Ogata Y (1999) Estimating the hazard of rupture using uncertain occurrence times of paleoearthquakes. J Geophys Res 104:17,995–18,014ADSCrossRefGoogle Scholar
  108. Oglesby DD (1999) Earthquake dynamics on dip-slip faults[Thesis]. Type, University of California, Santa BarbaraGoogle Scholar
  109. Oglesby DD, Archuleta RJ, Nielsen SB (1998) Earthquakes on dipping faults: the effects of broken symmetry. Science 280:1055–1059ADSCrossRefGoogle Scholar
  110. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154Google Scholar
  111. Olsen KB, Archuleta RJ, Matarese JR (1995) Three-dimensional simulation of a magnitude 7.75 earthquake on the San Andreas fault. Science 270:1628–1632ADSCrossRefGoogle Scholar
  112. Parsons T (2002) Global Omori law decay of triggered earthquakes: large aftershocks outside the classical aftershock zone. J Geophys Res 107:2199.  https://doi.org/10.1029/2001JB000646CrossRefGoogle Scholar
  113. Parsons T (2008) Monte Carlo method for determining earthquake recurrence parameters from short paleoseismic catalogs: example calculations for California. J Geophys Res 113.  https://doi.org/10.1029/2007JB004998
  114. Parsons T, Geist EL (2009) Tsunami probability in the Caribbean region. Pure Appl Geophys 165:2089–1226ADSCrossRefGoogle Scholar
  115. Peitgen H-O, Jürgens H, Saupe D (1992) Chaos and fractals: new Frontiers of science. Springer, New YorkzbMATHCrossRefGoogle Scholar
  116. Power W, Wang X, Lane E, Gillibrand P (2013) A probabilistic tsunami hazard study of the Auckland region, part I: propagation modelling and tsunami hazard assessment at the shoreline. Pure Appl Geophys 170:1621–1634ADSCrossRefGoogle Scholar
  117. Prevosto M, Kogstad HE, Robin A (2000) Probability distributions for maximum wave and crest heights. Coast Eng 40:329–360CrossRefGoogle Scholar
  118. Rabinovich AB, Candella RN, Thomson RE (2011) Energy decay of the 2004 Sumatra tsunami in the World Ocean. Pure Appl Geophys 168:1919–1950ADSCrossRefGoogle Scholar
  119. Rayleigh JWS (1880) On the resultant of a large number of vibrations of the same pitch and of arbitrary phase. Philos Mag 10:73–78CrossRefGoogle Scholar
  120. Ruiz JA, Fuentes M, Riquelme S, Campos J, Cisternas A (2015) Numerical simulation of tsunami runup in northern Chile based on non-uniform k−2 slip distributions. Nat Hazards 79:1177–1198CrossRefGoogle Scholar
  121. Ryan KJ, Geist EL, Barall M, Oglesby DD (2015) Dynamic models of an earthquake and tsunami offshore Ventura, California. Geophys Res Lett 42:6599–6606ADSCrossRefGoogle Scholar
  122. Rychlik I, Leadbetter MR (1997) Analysis of ocean waves by crossing and oscillation intensities. In: Proceedings of the seventh international offshore and polar engineering conference (ISOPE), vol 3, Golden, pp 206–213Google Scholar
  123. Rychlik I, Johannesson P, Leadbetter MR (1997) Modelling and statistical analysis of ocean-wave data using transformed Gaussian processes. Mar Struct 10:13–47CrossRefGoogle Scholar
  124. Saito T, Furumura T (2009) Scattering of linear long-wave tsunamis due to randomly fluctuating sea-bottom topography: coda excitation and scattering attenuation. Geophys J Int 177:958–965ADSCrossRefGoogle Scholar
  125. Satake K (2007) Tsunamis. In: Kanamori H, Schubert G (eds) Treatise on geophysics, volume 4-earthquake seismology, vol 4. Elsevier, Amsterdam, pp 483–511CrossRefGoogle Scholar
  126. Satake K, Kanamori H (1991) Use of tsunami waveforms for earthquake source study. Nat Hazards 4:193–208CrossRefGoogle Scholar
  127. Satake K, Yoshida Y, Abe K (1992) Tsunami from the Mariana earthquake of April 5, 1990: its abnormal propagation and implications for tsunami potential from outer-rise earthquakes. Geophys Res Lett 19:301–304ADSCrossRefGoogle Scholar
  128. Satake K, Fujii Y, Harada T, Namegaya Y (2013) Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data. Bull Seismol Soc Am 103:1473–1492CrossRefGoogle Scholar
  129. Savage JC (1994) Empirical earthquake probabilities from observed recurrence intervals. Bull Seismol Soc Am 84:219–221Google Scholar
  130. Selva J, Tonini R, Molinari I, Tiberti MM, Romano F, Grezio A et al (2016) Quantification of source uncertainties in seismic probabilistic tsunami Hazard analysis (SPTHA). Geophys J Int 205:1780–1803ADSCrossRefGoogle Scholar
  131. Sepúlveda I, Liu PL-F, Grigoriu M, Pritchard M (2017) Tsunami hazard assessments with consideration of uncertain earthquake slip distribution and location. J Geophys Res Solid Earth 122:7252–7271ADSCrossRefGoogle Scholar
  132. Sornette D, Sornette A (1999) General theory of the modified Gutenberg-Richter law for large seismic moments. Bull Seismol Soc Am 89:1121–1130Google Scholar
  133. Stark CP, Hovius N (2001) The characterization of landslide size distributions. Geophys Res Lett 28:1091–1094ADSCrossRefGoogle Scholar
  134. Strasser FO, Arango MC, Bommer JJ (2010) Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismol Res Lett 81:941–950CrossRefGoogle Scholar
  135. Takahara M, Yomogida K (1992) Estimation of coda Q using the maximum likelihood method. Pure Appl Geophys 139:255–268ADSCrossRefGoogle Scholar
  136. Tamura S, Ide S (2011) Numerical study of splay faults in subduction zones: the effects of bimaterial interface and free surface. J Geophys Res 116.  https://doi.org/10.1029/2011JB008283
  137. Tanioka Y, Satake K (1996) Tsunami generation by horizontal displacement of ocean bottom. Geophys Res Lett 23:861–865ADSCrossRefGoogle Scholar
  138. ten Brink US, Geist EL, Andrews BD (2006) Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico. Geophys Res Lett 33.  https://doi.org/10.1029/2006GL026125
  139. Titov VV, González FI, Bernard EN, Ebel JE, Mofjeld HO, Newman JC et al (2005) Real-time tsunami forecasting: challenges and solutions. Nat Hazards 35:40–58CrossRefGoogle Scholar
  140. Tsai CP (1997) Slip, stress drop and ground motion of earthquakes: a view from the perspective of fractional Brownian motion. Pure Appl Geophys 149:689–706ADSCrossRefGoogle Scholar
  141. Turcotte DL (1992) Fractals and chaos in geology and geophysics. Cambridge University Press, Cambridge, p 221zbMATHGoogle Scholar
  142. Turcotte D (2013) Fractals in geology and geophysics. In: Meyers R (ed) Encyclopedia of complexity and systems science. Springer, Berlin/HeidelbergGoogle Scholar
  143. van Dorn WG (1984) Some tsunami characteristic deducible from tide records. J Phys Oceanogr 14:353–363ADSCrossRefGoogle Scholar
  144. Vere-Jones D (2013) Earthquake occurrence and mechanisms, stochastic models for. In: Meyers R (ed) Encyclopedia of complexity and systems science. Springer, Berlin/HeidelbergGoogle Scholar
  145. Vere-Jones D, Robinson R, Yang W (2001) Remarks on the accelerated moment release model: problems of model formulation, simulation and estimation. Geophys J Int 144:517–531ADSCrossRefGoogle Scholar
  146. Wendt J, Oglesby DD, Geist EL (2009) Tsunamis and splay fault dynamics. Geophys Res Lett 36.  https://doi.org/10.1029/2009GL038295CrossRefGoogle Scholar
  147. Werner M, Sornette D (2013) Seismicity, statistical physics approaches to. In: Meyers R (ed) Encyclopedia of complexity and systems science. Springer, Berlin/HeidelbergGoogle Scholar
  148. Whirley RG, Engelmann BE (1993) DYNA3D: a nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics – user manual. University of California, Lawrence Livermore National LaboratoryGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Authors and Affiliations

  • Eric L. Geist
    • 1
    Email author
  • David D. Oglesby
    • 2
  • Kenny J. Ryan
    • 3
  1. 1.U.S. Geological SurveyMenlo ParkUSA
  2. 2.Department of Earth SciencesUniversity of CaliforniaRiversideUSA
  3. 3.Air Force Research LaboratoryAlbuquerqueUSA