Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Tsunamis: Stochastic Models of Occurrence and Generation Mechanisms

  • Eric L. GeistEmail author
  • David D. Oglesby
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_595-1

Definition of Subject

The devastating consequences of the 2004 Indian Ocean and 2011 Japan tsunamis have led to increased research into many different aspects of the tsunami phenomenon. In this entry, we review research related to the observed complexity and uncertainty associated with tsunami generation, propagation, and occurrence described and analyzed using a variety of stochastic methods. In each case, seismogenic tsunamis are primarily considered. Stochastic models are developed from the physical theories that govern tsunami evolution combined with empirical models fitted to seismic and tsunami observations, as well as tsunami catalogs. These stochastic methods are key to providing probabilistic forecasts and hazard assessments for tsunamis. The stochastic methods described here are similar to those described for earthquakes (Vere-Jones 2013) and volcanoes (Bebbington 2013) in this encyclopedia.

Introduction

Tsunamis are generated in the ocean by rapidly displacing the entire...

Keywords

Tsunami models Earthquake models, Stochastic process Tsunami generation Dynamic earthquake rupture Tsunami time series Tsunami occurrence Tsunami probability 
This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

The authors gratefully acknowledge careful readings of this entry and constructive comments by Martin Mai, Mark Bebbington, Kenji Satake, Tom Parsons, and, the Encyclopedia Section Editor, William H. K. Lee. Data used in this study include DART bottom-pressure recorder data from the event archive at NOAA’s National Data Buoy Center and digital tide-gauge records from NOAA’s National Tsunami Warning Center. Analysis of tsunami records was performed in part using the Wave Analysis for Fatigue and Oceanography (WAFO) package developed at Lund University, Sweden.

Bibliography

  1. Aitkin M (2010) Statistical inference: an integrated Bayesian/likelihood approach, vol 116. CRC Press, Boca Raton, p 236Google Scholar
  2. Akaike H (1980) Likelihood and the Bayes procedure. Trabajos de Estadística y de Investigación Operativa 31:143–166MathSciNetGoogle Scholar
  3. Aki K, Chouet B (1975) Origin of coda waves: source, attenuation, and scattering effects. J Geophys Res 80:3322–3342ADSGoogle Scholar
  4. Andrews DJ (1976) Rupture velocity of plane strain shear cracks. J Geophys Res 81:5679–5687ADSGoogle Scholar
  5. Andrews DJ (1980) A stochastic fault model 1. Static case. J Geophys Res 85:3867–3877ADSGoogle Scholar
  6. Andrews DJ, Barall M (2011) Specifying initial stress for dynamic heterogeneous earthquake source models. Bull Seismol Soc Am 101:2408–2417Google Scholar
  7. Annaka T, Satake K, Sakakiyama T, Yanagisawa K, Shuto N (2007) Logic-tree approach for probabilistic tsunami hazard analysis and it applications to the Japanese Coasts. Pure Appl Geophys 164:577–592ADSGoogle Scholar
  8. Aochi H, Fukuyama E, Matsu′ura M (2000) Selectivity of spontaneous rupture propagation on a branched fault. Geophys Res Lett 27:3635–3638ADSGoogle Scholar
  9. Bartlett MS (1978) An introduction to stochastic processes, 3rd edn. Cambridge University Press, Cambridge, p 388zbMATHGoogle Scholar
  10. Bebbington M (2013) Volcanic eruptions: stochastic models of occurrence patterns. In: Meyers R (ed) Encyclopedia of complexity and systems science. Springer, Berlin/HeidelbergGoogle Scholar
  11. Beichelt FE, Fatti LP (2002) Stochastic processes and their applications. Taylor & Francis, LondonzbMATHGoogle Scholar
  12. Blaser L, Krüger F, Ohrnberger M, Scherbaum F (2010) Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bull Seismol Soc Am 100:2914–2926Google Scholar
  13. Bormann P, Aki K, Lee WHK, Schweitzer J (2013) Glossary. In: Bormann P (ed) New manual of seismological observatory practice, 2. Deutsches GeoFoschungsZentrum GFZ, Potsdam, pp 1–200. doi:10.2312/GFZ.NMSOP-2_GlossaryGoogle Scholar
  14. Burbridge D, Cummins PR, Mleczko R, Thio HK (2008) A probabilistic tsunami hazard assessment for Western Australia. Pure Appl Geophys 165:2059–2088ADSGoogle Scholar
  15. Burroughs SM, Tebbens SF (2005) Power law scaling and probabilistic forecasting of tsunami runup heights. Pure Appl Geophys 162:331–342ADSGoogle Scholar
  16. Candela T, Renard F, Klinger Y, Mair K, Schmittbuhl J, Brodsky EE (2012) Roughness of fault surfaces over nine decades of length scales. J Geophy Res 117. doi:10.10029/2011JB009041Google Scholar
  17. Corral A (2009) Point-occurrence self-similarity in crackling-noise systems and in other complex systems. J Stat Mech Theory Exp. doi:10.1088/1742-5468/2009/01/P01022Google Scholar
  18. Daley DJ, Vere-Jones D (2003) An introduction to the theory of point processes, vol 1, 2nd edn. Springer, New YorkzbMATHGoogle Scholar
  19. Das S (1981) Three-dimensional spontaneous rupture propagation and implications for the earthquake source mechanism. Geophys J Roy Astron Soc 67:375–393Google Scholar
  20. Day SM (1982) Three-dimensional simulation of spontaneous rupture: the effect of nonuniform prestress. Bull Seismol Soc Am 72:1881–1902Google Scholar
  21. DeDontney N, Rice JR, Dmowska R (2012) Finite element modeling of branched ruptures including off-fault plasticity. Bull Seismol Soc Am 102:541–562Google Scholar
  22. Duan B, Oglesby DD (2007) Nonuniform prestress from prior earthquakes and the effect on dynamics of branched fault systems. J Geophys Res 112:B05308. doi:10.1029/2006JB004443ADSGoogle Scholar
  23. Geist EL (2002) Complex earthquake rupture and local tsunamis. J Geophy Res 107:doi:10.1029/2000JB000139Google Scholar
  24. Geist EL (2009) Phenomenology of tsunamis: statistical properties from generation to runup. Adv Geophys 51:107–169ADSGoogle Scholar
  25. Geist EL (2012a) Near-field tsunami edge waves and complex earthquake rupture. Pure Appl Geophys. doi:10.1007/s00024-012-0491-7Google Scholar
  26. Geist EL (2012b) Phenomenology of tsunamis II: scaling, event statistics, and inter-event triggering. Adv Geophys 53:35–92ADSGoogle Scholar
  27. Geist EL (2014) Explanation of temporal clustering of tsunami sources using the epidemic-type aftershock sequence model. Bull Seismol Soc Am 104:2091–2103Google Scholar
  28. Geist EL, Oglesby DD (2014) Earthquake mechanics and tsunami generation. In: Beer M, Patelli E, Kougioumtzoglou IA, Au I S-K (eds) Encyclopedia of Earthquake Engineering. Springer-Verlag, Berlin, doi: 10.1007/978-3-642-36197-5_296-1, pp 1–17Google Scholar
  29. Geist EL, Parsons T (2006) Probabilistic analysis of tsunami hazards. Nat Hazards 37:277–314Google Scholar
  30. Geist EL, Parsons T (2008) Distribution of tsunami inter-event times. Geophys Res Lett 35, L02612. doi:10.1029/2007GL032690ADSGoogle Scholar
  31. Geist EL, Parsons T (2010) Estimating the empirical probability of submarine landslide occurrence. In: Mosher DC, Shipp C, Moscardelli L, Chaytor J, Baxter C, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences, vol IV. Springer, Heidelberg, pp 377–386Google Scholar
  32. Geist EL, Parsons T (2011) Assessing historical rate changes in global tsunami occurrence. Geophys J Int 187:497–509ADSGoogle Scholar
  33. Geist EL, Parsons T (2014) Undersampling power-law size distributions: effect on the assessment of extreme natural hazards. Nat Hazards 72:565–595Google Scholar
  34. Geist EL, Parsons T, ten Brink US, Lee HJ (2009) Tsunami probability. In: Bernard EN, Robinson AR (eds) The sea, vol 15. Harvard University Press, Cambridge, MA, pp 93–135Google Scholar
  35. Geist EL, Chaytor JD, Parsons T, ten Brink U (2013) Estimation of submarine mass failure probability from a sequence of deposits with age dates. Geosphere 9:287–298ADSGoogle Scholar
  36. González FI, Kulikov YA (1993) Tsunami dispersion observed in the deep ocean. In: Tinti S (ed) Tsunamis in the world. Kluwer, Dordrecht, pp 7–16Google Scholar
  37. González FI, Geist EL, Jaffe BE, Kânoglu U, Mofjeld HO, Synolakis CE et al (2009) Probabilistic tsunami hazard assessment at Seaside, Oregon for near- and far-field seismic sources. J Geophys Res 114. doi:10.1029/2008JC005132Google Scholar
  38. Greenhough J, Main IG (2008) A Poisson model for earthquake frequency uncertainties in seismic hazard analysis. Geophys Res Lett 35. doi:10.1029/2008GL035353Google Scholar
  39. Guatteri M, Mai PM, Beroza GC (2004) A pseudo-dynamic approximation to dynamic rupture models for strong ground motion prediction. Bull Seismol Soc Am 94:2051–2063Google Scholar
  40. Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188Google Scholar
  41. Harris RA, Archuleta RJ, Day SM (1991) Fault steps and the dynamic rupture process – 2-D numerical simulations of a spontaneously propagating shear fracture. Geophys Res Lett 18:893–896ADSGoogle Scholar
  42. Hergarten S (2003) Landslides, sandpiles, and self-organized criticality. Nat Hazards Earth Syst Sci 3:505–514ADSGoogle Scholar
  43. Hergarten S, Neugebauer HJ (1998) Self-organized criticality in a landslide model. Geophys Res Lett 25:801–804ADSGoogle Scholar
  44. Herrero A, Bernard P (1994) A kinematic self-similar rupture process for earthquakes. Bull Seismol Soc Am 84:1216–1228Google Scholar
  45. Hisada Y (2000) A theoretical omega-square model considering the spatial variation in slip and rupture velocity. Bull Seismol Soc Am 90:387–400Google Scholar
  46. Hisada Y (2001) A theoretical omega-square model considering the spatial variation in slip and rupture velocity. Part 2: Case for a two-dimensional source model. Bull Seismol Soc Am 91:651–666Google Scholar
  47. Hogben N (1990) Long term wave statistics. In: Le Méhauté B, Hanes DM (eds) Ocean engineering science, vol 9. Wiley, New York, pp 293–333Google Scholar
  48. Huang NE, Tung CC, Long SR (1990) The probability structure of the ocean surface. In: Le Méhauté B, Hanes DM (eds) Ocean engineering science, vol 9. Wiley, New York, pp 335–366Google Scholar
  49. Ishimoto M, Iida K (1939) Observations of earthquakes registered with the microseismograph constructed recently. Bull Earthq Res Inst 17:443–478Google Scholar
  50. Jha AK, Winterstein SR (2000) Nonlinear random ocean waves: prediction and comparison with data. In: Proceedings of the ETCE/OMAE2000 joint conference: energy for the new millennium. ASME, New Orleans, pp 1–12Google Scholar
  51. Kagan YY (1973) Statistical methods in the study of seismic processes. Bull Int Stat Inst 45:437–453Google Scholar
  52. Kagan YY (1991) Seismic moment distribution. Geophys J Int 106:123–134ADSGoogle Scholar
  53. Kagan YY (2002) Seismic moment distribution revisited: I. statistical results. Geophys J Int 148:520–541ADSGoogle Scholar
  54. Kagan YY (2007) Why does theoretical physics fail to explain and predict earthquake occurrence? In: Bhattacharyya P, Chakrabarti BK (eds) Modelling critical and catastrophic phenomena in geoscience. Springer, Berlin, pp 303–359Google Scholar
  55. Kagan YY (2010) Statistical distributions of earthquake numbers: consequence of branching process. Geophys J Int 180:1313–1328ADSGoogle Scholar
  56. Kagan YY, Jackson DD (2000) Probabilistic forecasting of earthquakes. Geophys J Int 143:438–453ADSGoogle Scholar
  57. Kame N, Rice JR, Dmowska R (2003) Effects of pre-stress state and rupture velocity on dynamic fault branching. J Geophys Res 108:2265. doi:10.1029/2002JB002189Google Scholar
  58. Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82:2981–2987ADSGoogle Scholar
  59. Koshimura S, Hayashi Y, Munemoto K, Imamura F (2008) Effect of the Emperor seamounts on transoceanic propagation of the 2006 Kuril Island earthquake tsunami. Geophys Res Lett 35. doi:10.1029/2007GL032129Google Scholar
  60. Kowalik Z, Horrillo J, Knight W, Logan T (2008) Kuril Islands tsunami of November 2006: 1. Impact at Crescent City by distant scattering. J Geophys Res 113. doi:10.1029/2007JC004402Google Scholar
  61. Lavallée D (2008) On the random nature of earthquake sources and ground motions: a unified theory. Adv Geophys 50:427–461Google Scholar
  62. Lavallée D, Liu P, Archuleta RJ (2006) Stochastic model of heterogeneity in earthquake slip spatial distributions. Geophys J Int 165:622–640ADSGoogle Scholar
  63. Lavallée D, Miyake H, Koketsu K (2011) Stochastic model of a subduction-zone earthquake: sources and ground motions for the 2003 Tokachi-oki, Japan, earthquake. Bull Seismol Soc Am 101:1807–1821Google Scholar
  64. Lay T, Kanamori H, Ammon CJ, Hutko AR, Furlong K, Rivera L (2009) The 2006–2007 Kuril Islands great earthquake sequence. J Geophys Res 114, doi:10.1029/2008JB006280Google Scholar
  65. Liu-Zeng J, Heaton TH, DiCaprio C (2005) The effect of slip variability on earthquake slip-length scaling. Geophys J Int 162:841–849ADSGoogle Scholar
  66. Longuet-Higgins MS (1952) On the statistical distribution of the heights of sea waves. J Mar Res 11:245–266Google Scholar
  67. Ma S, Beroza GC (2008) Rupture dynamics on a bimaterial interface for dipping faults. Bull Seismol Soc Am 98:1642–1658Google Scholar
  68. Mai PM, Beroza GC (2002) A spatial random field model to characterize complexity in earthquake slip. J Geophys Res 107. doi:10.1029/2001JB000588Google Scholar
  69. Main I (2000) Apparent breaks in scaling in the earthquake cumulative frequency-magnitude distribution: fact or artifact? Bull Seismol Soc Am 90:86–97Google Scholar
  70. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Processes Landf 29:687–7111ADSGoogle Scholar
  71. Massel SR (1996) Ocean surface waves: their physics and prediction, vol 11. World Scientific, SingaporeGoogle Scholar
  72. McCloskey J, Antonioli A, Piatanesi A, Sieh K, Steacy S, Nalbant S et al (2008) Tsunami threat in the Indian Ocean from a future megathrust earthquake west of Sumatra. Earth Planet Sci Lett 265:61–81ADSGoogle Scholar
  73. McKane A (2013) Stochastic processes. In: Meyers R (ed) Encyclopedia of complexity and systems science. Springer, Berlin/HeidelbergGoogle Scholar
  74. Meerschaert MM, Roy P, Shao Q (2012) Parameter estimation for exponentially tempered power law distributions. Commun Stat Theory Models 41:1839–1856zbMATHMathSciNetGoogle Scholar
  75. Mikumo T, Miyatake T (1993) Dynamic rupture processes on a dipping fault, and estimates of stress drop and strength excess from the results of waveform inversion. Geophys J Int 112:481–496ADSGoogle Scholar
  76. Mofjeld HO, González FI, Bernard EN, Newman JC (2000) Forecasting the heights of later waves in Pacific-wide tsunamis. Nat Hazards 22:71–89Google Scholar
  77. Mofjeld HO, Titov VV, González FI, Newman JC (2001) Tsunami scattering provinces in the Pacific Ocean. Geophys Res Lett 28:335–337ADSGoogle Scholar
  78. Muraleedharan G, Rao AD, Kurup PG, Nair NU, Sinha M (2007) Modified Weibull distribution for maximum and significant wave height simulation and prediction. Coast Eng 54:630–638Google Scholar
  79. Murotani S, Satake K, Fujii Y (2013) Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~9 subduction-zone earthquakes. Geophys Res Lett 40:5070–5074ADSGoogle Scholar
  80. Ochi MK (2005) Ocean waves: the stochastic approach. Cambridge University Press, Cambridge, UK, p 332Google Scholar
  81. Ogata Y (1988) Statistical models for earthquake occurrences and residual analysis for point processes. J Am Stat Assoc 83:9–27Google Scholar
  82. Ogata Y (1999) Estimating the hazard of rupture using uncertain occurrence times of paleoearthquakes. J Geophys Res 104:17995–18014ADSGoogle Scholar
  83. Oglesby DD (1999) Earthquake dynamics on dip-slip faults [Thesis]. University of California, Santa BarbaraGoogle Scholar
  84. Oglesby DD, Archuleta RJ, Nielsen SB (1998) Earthquakes on dipping faults: the effects of broken symmetry. Science 280:1055–1059ADSGoogle Scholar
  85. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154Google Scholar
  86. Olsen KB, Archuleta RJ, Matarese JR (1995) Three-dimensional simulation of a magnitude 7.75 earthquake on the San Andreas Fault. Science 270:1628–1632ADSGoogle Scholar
  87. Parsons T (2002) Global Omori law decay of triggered earthquakes: large aftershocks outside the classical aftershock zone. J Geophys Res 107:2199. doi:10.1029/2001JB000646Google Scholar
  88. Parsons T (2008) Monte Carlo method for determining earthquake recurrence parameters from short paleoseismic catalogs: example calculations for California. J Geophys Res 113. doi:10.1029/2007JB004998Google Scholar
  89. Parsons T, Geist EL (2009) Tsunami probability in the Caribbean region. Pure Appl Geophys 165:2089–1226ADSGoogle Scholar
  90. Peitgen H-O, Jürgens H, Saupe D (1992) Chaos and fractals: new frontiers of science. Springer, New YorkGoogle Scholar
  91. Power W, Wang X, Lane E, Gillibrand P (2013) A probabilistic tsunami hazard study of the Auckland region, Part I: propagation modelling and tsunami hazard assessment at the shoreline. Pure Appl Geophys 170:1621–1634ADSGoogle Scholar
  92. Prevosto M, Kogstad HE, Robin A (2000) Probability distributions for maximum wave and crest heights. Coast Eng 40:329–360Google Scholar
  93. Rayleigh JWS (1880) On the resultant of a large number of vibrations of the same pitch and of arbitrary phase. Philos Mag 10:73–78Google Scholar
  94. Rychlik I, Leadbetter MR (1997) Analysis of ocean waves by crossing and oscillation intensities. In: Proceedings of the seventh international offshore and polar engineering conference (ISOPE), vol 3. ISOPE, Golden, Colorado, pp 206–213Google Scholar
  95. Rychlik I, Johannesson P, Leadbetter MR (1997) Modelling and statistical analysis of ocean-wave data using transformed Gaussian processes. Mar Struct 10:13–47Google Scholar
  96. Saito T, Furumura T (2009) Scattering of linear long-wave tsunamis due to randomly fluctuating sea-bottom topography: coda excitation and scattering attenuation. Geophys J Int 177:958–965ADSGoogle Scholar
  97. Satake K (2007) Tsunamis. In: Kanamori H, Schubert G (eds) Treatise on geophysics, Volume 4-Earthquake seismology, vol 4. Elsevier, Amsterdam, pp 483–511Google Scholar
  98. Satake K, Kanamori H (1991) Use of tsunami waveforms for earthquake source study. Nat Hazards 4:193–208Google Scholar
  99. Satake K, Yoshida Y, Abe K (1992) Tsunami from the Mariana earthquake of April 5, 1990: its abnormal propagation and implications for tsunami potential from outer-rise earthquakes. Geophys Res Lett 19:301–304ADSGoogle Scholar
  100. Satake K, Fujii Y, Harada T, Namegaya Y (2013) Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data. Bull Seismol Soc Am 103:1473–1492Google Scholar
  101. Savage JC (1994) Empirical earthquake probabilities from observed recurrence intervals. Bull Seismol Soc Am 84:219–221Google Scholar
  102. Sornette D, Sornette A (1999) General theory of the modified Gutenberg-Richter law for large seismic moments. Bull Seismol Soc Am 89:1121–1130Google Scholar
  103. Stark CP, Hovius N (2001) The characterization of landslide size distributions. Geophys Res Lett 28:1091–1094ADSGoogle Scholar
  104. Strasser FO, Arango MC, Bommer JJ (2010) Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismol Res Lett 81:941–950Google Scholar
  105. Takahara M, Yomogida K (1992) Estimation of Coda Q using the maximum likelihood method. Pure Appl Geophys 139:255–268ADSGoogle Scholar
  106. Tamura S, Ide S (2011) Numerical study of splay faults in subduction zones: the effects of bimaterial interface and free surface. J Geophys Res 116. doi:10.1029/2011JB008283Google Scholar
  107. Tanioka Y, Satake K (1996) Tsunami generation by horizontal displacement of ocean bottom. Geophys Res Lett 23:861–865ADSGoogle Scholar
  108. ten Brink US, Geist EL, Andrews BD (2006) Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico. Geophys Res Lett 33. doi:10.1029/2006GL026125Google Scholar
  109. Titov VV, González FI, Bernard EN, Ebel JE, Mofjeld HO, Newman JC et al (2005) Real-time tsunami forecasting: challenges and solutions. Nat Hazards 35:40–58Google Scholar
  110. Tsai CP (1997) Slip, stress drop and ground motion of earthquakes: a view from the perspective of fractional Brownian motion. Pure Appl Geophys 149:689–706ADSGoogle Scholar
  111. Turcotte DL (1992) Fractals and chaos in geology and geophysics. Cambridge University Press, Cambridge, p 221Google Scholar
  112. Turcotte D (2013) Fractals in geology and geophysics. In: Meyers R (ed) Encyclopedia of complexity and systems science. Springer, Berlin/HeidelbergGoogle Scholar
  113. van Dorn WG (1984) Some tsunami characteristic deducible from tide records. J Phys Oceanogr 14:353–363ADSGoogle Scholar
  114. van Dorn WG (1987) Tide gage response to tsunamis. Part II: Other oceans and smaller seas, Journal of Physical Oceanography, 17, 1507–1517ADSGoogle Scholar
  115. Vere-Jones D (2013) Earthquake occurrence and mechanisms, stochastic models for. In: Meyers R (ed) Encyclopedia of complexity and systems science. Springer, Berlin/HeidelbergGoogle Scholar
  116. Vere-Jones D, Robinson R, Yang W (2001) Remarks on the accelerated moment release model: problems of model formulation, simulation and estimation. Geophys J Int 144:517–531ADSGoogle Scholar
  117. Wendt J, Oglesby DD, Geist EL (2009) Tsunamis and splay fault dynamics. Geophys Res Lett 36:doi:10.1029/2009GL038295Google Scholar
  118. Werner M, Sornette D (2013) Seismicity, statistical physics approaches to. In: Meyers R (ed) Encyclopedia of complexity and systems science. Springer, Berlin/HeidelbergGoogle Scholar
  119. Whirley RG, Engelmann BE (1993) DYNA3D: a nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics – user manual. University of California, Lawrence Livermore National LaboratoryGoogle Scholar

Copyright information

© Springer Science Business Media New York (outside the USA) 2014

Authors and Affiliations

  1. 1.U.S. Geological SurveyMenlo ParkUSA
  2. 2.Department of Earth SciencesUniversity of CaliforniaRiversideUSA