Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Novel Hardware for Unconventional Computing

Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_575-3

Definition of the Subject

Natural systems give us examples of amorphous, unstructured devices, capable of fault-tolerant information processing, particularly with regard to the massive parallel spatial problems that digital processors have difficulty with. For example, reaction-diffusion (RD) chemical systems have the unique ability to efficiently solve combinatorial problems with natural parallelism (Adamatzky 2001). In liquid-phase parallel RD processors (RD chemical computers), both the data and the results of the computation are encoded as concentration profiles of the reagents. The computation is performed via the spreading and interaction of the wave fronts. In experimental chemical processors, data are represented by local disturbances in the concentrations, and computation is accomplished via the interaction of waves caused by the local disturbances.

The RD chemical computers operate in parallel since the chemical medium’s micro-volumes update their states simultaneously, and...

Keywords

Cellular Automaton Voronoi Diagram Cellular Automaton Electron Tunneling Cellular Automaton Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

Bibliography

  1. Adamatzky A (1994) Reaction-diffusion algorithm for constructing discrete generalized Voronoi diagram. Neural Netw World 6:635–643Google Scholar
  2. Adamatzky A (1996) Voronoi-like partition of lattice in cellular automata. Math Comput Model 23:51–66MATHMathSciNetCrossRefGoogle Scholar
  3. Adamatzky A (1998) Universal dynamical computation in multi-dimensional excitable lattices. Int J Theor Phys 37:3069–3108MATHMathSciNetCrossRefGoogle Scholar
  4. Adamatzky A (2000) Reaction-diffusion and excitable processors: a sense of the unconventional. Parallel Distrib Comput Theor Pract 3:113–132Google Scholar
  5. Adamatzky A (2001) Computing in nonlinear media and automata collectives. Institute of Physics Publishing, BristolMATHCrossRefGoogle Scholar
  6. Adamatzky A (ed) (2002) Collision-based computing. Springer, LondonMATHGoogle Scholar
  7. Adamatzky A, De Lacy Costello BPJ (2002a) Experimental logical gates in a reaction-diffusion medium: the XOR gate and beyond. Phys Rev E 66:046112CrossRefADSGoogle Scholar
  8. Adamatzky A, De Lacy Costello BPJ (2002b) Collision-free path planning in the Belousov-Zhabotinsky medium assisted by a cellular automaton. Naturwissenschaften 89:474–478CrossRefADSGoogle Scholar
  9. Adamatzky A, De Lacy Costello BPJ (2003) On some limitations of reaction-diffusion computers in relation to Voronoi diagram and its inversion. Phys Lett A 309:397–406MATHMathSciNetCrossRefADSGoogle Scholar
  10. Adamatzky A, Tolmachiev D (1997) Chemical processor for computation of skeleton of planar shape. Adv Mater Opt Electron 7:135–139CrossRefGoogle Scholar
  11. Adamatzky A, De Lacy Costello B, Ratcliffe NM (2002) Experimental reaction-diffusion pre-processor for shape recognition. Phys Lett A 297:344–352MATHCrossRefADSGoogle Scholar
  12. Adamatzky A, Arena P, Basile A, Carmona-Galán R, De Lacy Costello B, Fortuna L, Frasca M, Rodríguez-Vázquez A (2004) Reaction-diffusion navigation robot control: from chemical to VLSI analogic processors. IEEE Trans Circ Syst I 51:926–938CrossRefGoogle Scholar
  13. Adamatzky A, De Lacy Costello B, Asai T (2005) Reaction-diffusion computers. Elsevier, AmsterdamGoogle Scholar
  14. Agladze K, Magome N, Aliev R, Yamaguchi T, Yoshikawa K (1997) Finding the optimal path with the aid of chemical wave. Phys D 106:247–254CrossRefGoogle Scholar
  15. Alioto M, Palumbo G (2005) Model and design of bipolar and MOS current-mode logic: CML, ECL and SCL digital circuits. Springer, BerlinGoogle Scholar
  16. Asahi N, Akazawa M, Amemiya Y (1998) Single-electron logic systems based on the binary decision diagram. IEICE Trans Electron E81-C:49–56Google Scholar
  17. Asai T, Nishimiya Y, Amemiya Y (2002) A CMOS reaction-diffusion circuit based on cellular-automaton processing emulating the Belousov-Zhabotinsky reaction. IEICE Trans Fundam E85-A:2093–2096Google Scholar
  18. Asai T, Adamatzky A, Amemiya Y (2004) Towards reaction-diffusion computing devices based on minority-carrier transport in semiconductors. Chaos Solitons Fractals 20:863–876MATHCrossRefADSGoogle Scholar
  19. Asai T, Ikebe M, Hirose T, Amemiya Y (2005a) A quadrilateral-object composer for binary images with reaction-diffusion cellular automata. Int J Parallel Emergen Distrib Syst 20:57–68MATHMathSciNetCrossRefGoogle Scholar
  20. Asai T, De Lacy Costello B, Adamatzky A (2005b) Silicon implementation of a chemical reaction-diffusion processor for computation of Voronoi diagram. Int J Bifur Chaos 15:3307–3320CrossRefGoogle Scholar
  21. Asai T, Kanazawa Y, Hirose T, Amemiya Y (2005c) Analog reaction-diffusion chip imitating the Belousov-Zhabotinsky reaction with hardware Oregonator model. Int J Unconv Comput 1:123–147Google Scholar
  22. Beato V, Engel H (2003) Pulse propagation in a model for the photosensitive Belousov-Zhabotinsky reaction with external noise. In: Schimansky-Geier L et al (eds) Noise in complex systems and stochastic dynamics. Proc SPIE 5114:353–362Google Scholar
  23. Brandtstadter H, Braune M, Schebesch I, Engel H (2000) Experimental study of the dynamics of spiral pairs in light-sensitive Belousov-Zhabotinskii media using an open-gel reactor. Chem Phys Lett 323:145–154CrossRefADSGoogle Scholar
  24. Daikoku T, Asai T, Amemiya Y (2002) An analog CMOS circuit implementing Turing’s reaction-diffusion model. Proc Int Symp Nonlinear Theor Appl 809–812Google Scholar
  25. De Lacy Costello B, Adamatzky A (2003) On multitasking in parallel chemical processors: experimental findings. Int J Bifur Chaos 13:521–533MATHCrossRefGoogle Scholar
  26. De Lacy Costello B, Adamatzky A, Ratcliffe N, Zanin AL, Liehr AW, Purwins HG (2004) The formation of Voronoi diagrams in chemical and physical systems: experimental findings and theoretical models. Int J Bifur Chaos 14:2187–2210MATHCrossRefGoogle Scholar
  27. Flessels JM, Belmonte A, Gáspár V (1998) Dispersion relation for waves in the Belousov-Zhabotinsky reaction. J Chem Soc Faraday Trans 94:851–855CrossRefGoogle Scholar
  28. Fukai T (1996) Competition in the temporal domain among neural activities phase-locked to subthreshold oscillations. Biol Cybern 75:453–461MATHCrossRefGoogle Scholar
  29. Furukawa Y, Yonezu H, Ojima K, Samonji K, Fujimoto Y, Momose K, Aiki K (2001) Control of N content of GaPN grown by molecular beam epitaxy and growth of GaPN lattice-matched to Si(100) substrate. Jpn J Appl Phys 41:528–532CrossRefADSGoogle Scholar
  30. Gerhardt M, Schuster H, Tyson JJ (1990) A cellular automaton model of excitable media. Phys D 46:392–415MATHMathSciNetCrossRefGoogle Scholar
  31. Gravert H, Devoret MH (1992) Single charge tunneling – Coulomb blockade phenomena in nanostructures. Plenum, New YorkCrossRefGoogle Scholar
  32. Grill S, Zykov VS, Müller SC (1996) Spiral wave dynamics under pulsatory modulation of excitability. J Phys Chem 100:19082–19088CrossRefGoogle Scholar
  33. Karahaliloglu K, Balkir S (2005) Bio-inspired compact cell circuit for reaction-diffusion systems. IEEE Trans Circ Syst II Expr Brief 52:558–562CrossRefGoogle Scholar
  34. Kuhnert L, Agladze KL, Krinsky VI (1989) Image processing using light-sensitive chemical waves. Nature 337:244–247CrossRefADSGoogle Scholar
  35. Kumakura K, Nakakoshi K, Motohisa J, Fukui T, Hasegawa H (1995) Novel formation method of quantum dot structures by self-limited selective area metalorganic vapor phase epitaxy. Jpn J Appl Phys 34:4387–4389CrossRefADSGoogle Scholar
  36. Kumakura K, Motohisa J, Fukui T (1997) Formation and characterization of coupled quantum dots (CQDs) by selective area metalorganic vapor phase epitaxy. J Cryst Growth 170:700–704CrossRefADSGoogle Scholar
  37. Kuwamura N, Taniguchi K, Hamakawa C (1994) Simulation of single-electron logic circuits. IEICE Trans Electron J77-C-II:221–228Google Scholar
  38. Matsubara Y, Asai T, Hirose T, Amemiya Y (2004) Reaction-diffusion chip implementing excitable lattices with multiple-valued cellular automata. IEICE Electron Express 1:248–252CrossRefGoogle Scholar
  39. Mohajerzadeh S, Nathan A, Selvakumar CR (1994) Numerical simulation of a p-n-p-n color sensor for simultaneous color detection. Sensors Actuators A 44:119–124CrossRefGoogle Scholar
  40. Muller DE (1954) Application of boolean algebra to switching circuit design and to error detection. IRE Trans Electr Comput EC-3:6–12Google Scholar
  41. Niedernostheide FJ, Kreimer M, Kukuk B, Schulze HJ, Purwins HG (1994) Travelling current density filaments in multilayered silicon devices. Phys Lett A 191:285–290CrossRefADSGoogle Scholar
  42. Oya T, Asai T, Fukui T, Amemiya Y (2002) A majority-logic nanodevice using a balanced pair of single-electron boxes. J Nanosci Nanotechnol 2:333–342CrossRefGoogle Scholar
  43. Oya T, Asai T, Fukui T, Amemiya Y (2005) Reaction-diffusion systems consisting of single-electron circuits. Int J Unconv Comput 1:123–147Google Scholar
  44. Petrov V, Ouyang Q, Swinney HL (1997) Resonant formation in a chemical system. Nature 388:655–657CrossRefADSGoogle Scholar
  45. Rambidi NG (1998) Neural network devices based on reaction-diffusion media: an approach to artificial retina. Supramol Sci 5:765–767CrossRefGoogle Scholar
  46. Rambidi NG, Yakovenchuk D (2001) Chemical reaction-diffusion implementation of finding the shortest paths in a labyrinth. Phys Rev E63:0266071–0266076Google Scholar
  47. Rambidi NG, Shamayaev KE, Peshkov GY (2002) Image processing using light-sensitive chemical waves. Phys Lett A 298:375–382CrossRefADSGoogle Scholar
  48. Reed IS (1954) A class of multiple-error-correcting codes and their decoding scheme. IRE Trans Inf Theory PGIT-4:38–49CrossRefGoogle Scholar
  49. Schebesch I, Engel H (1998) Wave propagation in heterogeneous excitable media. Phys Rev E 57:3905–3910CrossRefADSGoogle Scholar
  50. Serrano-Gotarredona T, Linares-Barranco B (2003) Log-domain implementation of complex dynamics reaction-diffusion neural networks. IEEE Trans Neural Netw 14:1337–1355CrossRefGoogle Scholar
  51. Shelar RS, Sapatnekar SS (2001) BDD decomposition for the synthesis of high performance PTL circuits. Workshop Notes IEEE IWLS 2001 298–303Google Scholar
  52. Soeleman H, Roy K, Paul BC (2001) Robust subthreshold logic for ultra-low power operation. IEEE Trans VLSI Syst 9:90–99CrossRefGoogle Scholar
  53. Song M, Asada K (1998) Design of low power digital VLSI circuits based on a novel pass-transistor logic. IEICE Trans Electron E81-C:1740–1749Google Scholar
  54. Steinbock O, Toth A, Showalter K (1995) Navigating complex labyrinths: optimal paths from chemical waves. Science 267:868–871CrossRefADSGoogle Scholar
  55. Suzuki Y, Takayama T, Motoike IN, Asai T (2007) Striped and spotted pattern generation on reaction-diffusion cellular automata: theory and LSI implementation. Int J Unconv Comput 3:1–13Google Scholar
  56. Tóth Á, Showalter K (1995) Logic gates in excitable media. J Chem Phys 103:2058–2066CrossRefADSGoogle Scholar
  57. Tóth Á, Gáspár V, Showalter K (1994) Propagation of chemical waves through capillary tubes. J Phys Chem 98:522–531CrossRefGoogle Scholar
  58. Wang J (2001) Light-induced pattern formation in the excitable Belousov-Zhabotinsky medium. Chem Phys Lett 339:357–361CrossRefADSGoogle Scholar
  59. Yamada T, Akazawa M, Asai T, Amemiya Y (2001) Boltzmann machine neural network devices using single-electron tunneling. Nanotechnology 12:60–67CrossRefADSGoogle Scholar
  60. Yamada K, Asai T, Hirose T, Amemiya Y (2008) On digital LSI circuits exploiting collision-based fusion gates. Int J Unconv Comput 4:45–59Google Scholar
  61. Yoneyama M (1996) Optical modification of wave dynamics in a surface layer of the Mn-catalyzed Belousov-Zhabotinsky reaction. Chem Phys Lett 254:191–196CrossRefADSGoogle Scholar
  62. Young DA (1984) A local activator-inhibitor model of vertebrate skin patterns. Math Biosci 72:51–58MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Hokkaido UniversitySapporoJapan