Fractal Structures in Condensed Matter Physics
Definition of the Subject
The idea of fractals is based on self-similarity, which is a symmetry property of a system characterized by invariance under an isotropic scale transformation on certain length scales. The term scale invariance has the implication that objects look the same on different scales of observations. While the underlying concept of fractals is quite simple, the concept is used for an extremely broad range of topics, providing a simple description of highly complex structures found in nature. The term fractalwas first introduced by Benoit B. Mandelbrot in 1975, who gave a definition on fractals in a simple manner “A fractal is a shape made of parts similar to the whole in some way.” Thus far, the concept of fractals has been extensively used to understand the behaviors of many complex systems or has been applied from physics, chemistry, and biology for applied sciences and technological purposes. Examples of fractal structures in condensed matter physics are...
Keywords
Fractal Dimension Hausdorff Dimension Fractal Network Fractal Structure Silica AerogelBibliography
Primary Literature
- Alexander S, Orbach R (1982) Density of states: fractons. J Phys Lett 43:L625–L631CrossRefGoogle Scholar
- Beeckmans JM (1963) The density of aggregated solid aerosol particles. Ann Occup Hyg 7:299–305Google Scholar
- Ben-Avraham D, Havlin S (1982) Diffusion on percolation at criticality. J Phys A 15:L691–L697ADSCrossRefGoogle Scholar
- Brady RM, Ball RC (1984) Fractal growth of copper electro-deposits. Nature 309:225–229ADSCrossRefGoogle Scholar
- Broadbent SR, Hammersley JM (1957) Percolation processes I: crystals and mazes. Proc Cambridge Philos Soc 53:629–641ADSCrossRefMATHMathSciNetGoogle Scholar
- Courtens E, Vacher R, Pelous J, Woignier T (1988) Observation of fractons in silica aerogels. Europhys Lett 6:L691–L697CrossRefGoogle Scholar
- de Gennes PG (1976) La percolation: un concept unificateur. Recherche 7:919–927Google Scholar
- Einstein A (1905) Über die von der molekularkinetischen Theorie der Waerme geforderte Bewegung von in Ruhenden Fluessigkeiten Suspendierten Teilchen. Ann Phys 17:549–560CrossRefMATHGoogle Scholar
- Gefen Y, Aharony A, Alexander S (1983) Anomalous diffusion on percolating clusters. Phys Rev Lett 50:70–73ADSCrossRefGoogle Scholar
- Hausdorff F (1919) Dimension und Aeusseres Mass. Math Ann 79:157–179CrossRefMathSciNetGoogle Scholar
- Kolb M, Botel R, Jullien R (1983) Scaling of kinetically growing clusters. Phys Rev Lett 51:1123–1126ADSCrossRefGoogle Scholar
- Mandelbrot BB, Given JA (1984) Physical properties of a new fractal model of percolation clusters. Phys Rev Lett 52:1853–1856ADSCrossRefGoogle Scholar
- Matsushita M et al (1984) Fractal structures of zinc metal leaves grown by electro-deposition. Phys Rev Lett 53:286–289ADSCrossRefGoogle Scholar
- Meakin P (1983) Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Phys Rev Lett 51:1119–1122ADSCrossRefGoogle Scholar
- Nyquist H (1928) Termal agitation nof electric charge in conductors. Phys Rev 32:110–113ADSCrossRefGoogle Scholar
- Perrin J (1909) Movement brownien et realite moleculaire. Ann Chim Phys 19:5–104Google Scholar
- Rammal R, Toulouze G (1983) Random walks on fractal structures and percolation clusters. J Phys Lett 44:L13–L22CrossRefGoogle Scholar
- Saffman PG, Taylor GI (1959) The penetration of a fluid into a porous medium or hele-shaw cell containing a more viscous fluid. Proc Roy Soc Lond Ser A 245:312–329ADSCrossRefMathSciNetGoogle Scholar
- Smoluchowski MV (1906) Zur Kinematischen Theorie der Brownschen Molekular Bewegung und der Suspensionen. Ann Phys 21:756–780CrossRefMATHGoogle Scholar
- Tambo N, Watanabe Y (1967) Study on the density profiles of aluminium flocs I (in japanese). Suidou Kyoukai Zasshi 397:2–10; ibid (1968) Study on the density profiles of aluminium flocs II (in japanese) 410:14–17Google Scholar
- Tambo N, Watanabe Y (1979) Physical characteristics of flocs I: the floc density function and aluminium floc. Water Res 13:409–419CrossRefGoogle Scholar
- Vacher R, Woignier T, Pelous J, Courtens E (1988) Structure and self-similarity of silica aerogels. Phys Rev B 37:6500–6503ADSCrossRefGoogle Scholar
- Vold MJ (1963) Computer simulation of floc formation in a colloidal suspension. J Colloid Sci 18:684–695CrossRefGoogle Scholar
- Weitz DA, Oliveria M (1984) Fractal structures formed by kinetic aggregation of aqueous cold colloids. Phys Rev Lett 52:1433–1436ADSCrossRefGoogle Scholar
- Weitz DA, Huang JS, Lin MY, Sung J (1984) Dynamics of diffusion-limited kinetics aggregation. Phys Rev Lett 53:1657–1660ADSCrossRefGoogle Scholar
- Witten TA, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47:1400–1403ADSCrossRefGoogle Scholar
- Yakubo K, Nakayama T (1989a) Direct observation of localized fractons excited on percolating nets. J Phys Soc Jpn 58:1504–1507ADSCrossRefGoogle Scholar
- Yakubo K, Nakayama T (1989b) Fracton dynamics of percolating elastic networks: energy spectrum and localized nature. Phys Rev B 40:517–523ADSCrossRefGoogle Scholar
Books and Reviews
- Barabasi AL, Stanley HE (1995) Fractal concepts in surface growth. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
- Ben-Avraham D, Havlin S (2000) Diffusion and reactions in fractals and disordered systems. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
- Bunde A, Havlin S (1996) Fractals and disordered systems. Springer, New YorkCrossRefMATHGoogle Scholar
- de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, ItahcaGoogle Scholar
- Falconer KJ (1989) Fractal geometry: mathematical foundations and applications. Wiley, New YorkGoogle Scholar
- Feder J (1988) Fractals. Plenum, New YorkCrossRefMATHGoogle Scholar
- Flory PJ (1969) Statistical mechanics of chain molecules. Inter Science, New YorkGoogle Scholar
- Halsey TC (2000) Diffusion-limited aggregation: a model for pattern formation. Phys Today 11:36–41CrossRefGoogle Scholar
- Kadanoff LP (1976) In: Domb C, Green MS (eds) Phase transitions and critical phenomena 5A. Academic, New YorkGoogle Scholar
- Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574–588ADSCrossRefGoogle Scholar
- Mandelbrot BB (1979) Fractals: form, chance and dimension. Freeman, San FranciscoGoogle Scholar
- Mandelbrot BB (1982) The fractal geometry of nature. Freeman, San FranciscoMATHGoogle Scholar
- Meakin P (1988) Fractal aggregates. Adv Colloid Interface Sci 28:249–331CrossRefGoogle Scholar
- Meakin P (1998) Fractals, scaling and growth far from equilibrium. Cambridge University Press, CambridgeMATHGoogle Scholar
- Nakayama T, Yakubo K (2003) Fractal concepts in condensed matter. Springer, HeidelbergCrossRefGoogle Scholar
- Nakayama T, Yakubo K, Orbach R (1994) Dynamical properties of fractal networks: scaling, numerical simulations, and physical realizations. Rev Mod Phys 66:381–443ADSCrossRefGoogle Scholar
- Sahimi M (1994) Applications of percolation theory. Taylor and Francis, LondonGoogle Scholar
- Schroeder M (1991) Fractals, chaos, power laws. W.H. Freeman, New YorkMATHGoogle Scholar
- Stauffer D, Aharony A (1992) Introduction to percolation theory, 2nd edn. Taylor and Francis, LondonGoogle Scholar
- Vicsek T (1992) Fractal growth phenomena, 2nd edn. World Scientific, SingaporeCrossRefMATHGoogle Scholar