Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Earthquake Source Parameters, Rapid Estimates for Tsunami Forecasts and Warnings

  • Barry HirshornEmail author
  • Stuart Weinstein
  • Dailin Wang
  • Kanoa Koyanagi
  • Nathan Becker
  • Charles McCreery
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_160-2


CMT centroid moment tensor

The CMT represents properties of the earthquake source derived from the seismic displacement of the Earth’s crust that best reproduces the observed wave field generated by an earthquake and gives the average location in time and space of the earthquake energy release. The scalar seismic moment can be determined from the CMT.


A type of integral transform combining two signals to form a third signal or output. The output signal is typically viewed as a modified version of one of the two original signals, giving the area overlap between the two signals as a function of one of the original signals is translated with respect to the other. It is the single most important technique in digital signal processing. In the case of seismology, the two signals can be, e.g., the ground motion as a function of time and the response of the seismometer, and the output is the seismogram.


Does the reverse of convolution. In the case of...

This is a preview of subscription content, log in to check access.



We thank Paula Dunbar of the National Geophysical Data Center for helping us obtain the data we needed and IRIS without which most of this work let alone a functioning TWC would not be possible. We also thank the PTWC for use of its facilities in preparing this manuscript.


Primary Literature

  1. Aki K (1966) Generation and propagation of G waves from the Niigata earthquake of June 16, 1964, Part 2. Estimation of earthquake moment, from the G wave spectrum. Bull Earth quake Res Inst Tokyo Univ 44:73–88Google Scholar
  2. Aki K (1967) Scaling law of seismic spectrum. J Geophys Res 72:1217–1231ADSCrossRefGoogle Scholar
  3. Allen RV (1978) Automatic earthquake recognition and timing from single traces. Bull Seism Soc Am 68:1521–1532Google Scholar
  4. Allen RV (1982) Automatic phase pickers: their present use and future prospects. Bull Seism Soc Am 72:225–242Google Scholar
  5. Ammon CJ, Ji C, Thio HK, Robinson D, Sidao N, Hjorleifsdottir V, Kanamori H, Lay T, Das S, Helmberger D, Ichinose G, Polet J, Wald D (2005) Rupture process of the 2004 Sumatra–Andaman earthquake. Science 6:113–1139Google Scholar
  6. Arakawa A, Lamb V (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput Phys 17:174–267Google Scholar
  7. Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim S-H, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, Von Rosenberg J, Wallace G, Weatherall P (2009) Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS. Marine Geodesy 32(4):355–371.  https://doi.org/10.1080/01490410903297766CrossRefGoogle Scholar
  8. Bilek SL, Lay T (1999) Rigidity variations with depth along interplate megathrust faults in subduction zones. Nature 400:443–446ADSCrossRefGoogle Scholar
  9. Bilek SL, Ruff LJ (2002) Analysis or the 23 June 2001 MW D 8:4 Peru underthrusting earthquake and its aftershocks. Geophys Res Lett 8:21:1–21:4CrossRefGoogle Scholar
  10. Bilek SL, Lay T, Ruff LJ (2004) Radiated seismic energy and earthquake source duration variations from teleseismic source time functions for shallow subduction zone thrust earth-quakes. J Geophys Res 109:B09308ADSCrossRefGoogle Scholar
  11. Boatwright J, Choy GL (1986) Teleseismic estimates of the energy radiated by shallow earthquakes. J Geophys Res 91:2095–2112ADSCrossRefGoogle Scholar
  12. Boatwright J, Choy GL, Seekins LC (2002) Regional estimates of radiated seismic energy. Bull Seism Soc Am 92:1241–1255CrossRefGoogle Scholar
  13. Bock Y, Melgar D, Crowell BW (2011) Real-time strong-motion broadband displacements from collocated GPS and accelerometers. Bull Seismol Soc Am 101:2904–2925.  https://doi.org/10.1785/0120110007CrossRefGoogle Scholar
  14. Bormann P, Baumbach M, Bock G, Grosser H, Choy GL, Boatwright J (2002) Seismic sources and source parameters. In: Bormann P (ed) IASPEI new manual seismological observatory practice, vol 1. Chapter 3. GeoForschungsZentrum Potsdam, pp 1–94. (This can also go as in the text cited review paper)Google Scholar
  15. Bormann P, Wylegalla K (2005) Quick estimator of the size of great earthquakes. Eos Trans AGU 86(46):464ADSCrossRefGoogle Scholar
  16. Bormann P, Wylegalla K, Saul J (2006) Broadband body-wave magnitudes mB and mBC for quick reliable estimation of the size of great earthquakes. USGS Tsunami Sources Work- shop 2006, poster, http://spring.msi.umn.edu/USGS/Posters/Bormann_etal_poster.pdfGoogle Scholar
  17. Bormann P, Saul J (2008a) Earthquake magnitude. In: Meyers A (ed) Encyclopedia of complexity and systems science. Springer, HeidelbergGoogle Scholar
  18. Bormann P, Saul J (2008b) The new IASPEI standard broadband magnitude mB. Seism Res Lett 79:698–705CrossRefGoogle Scholar
  19. Brune J (1970) Tectonic stress and seismic shear waves from earthquakes. J Geophys Res 75:4997–5009ADSCrossRefGoogle Scholar
  20. Brune J (1971) Tectonic stress and seismic shear waves from earthquakes; Correction. J Geophys Res 76:5002CrossRefGoogle Scholar
  21. Bryant E (2001) Distribution and fatalities. In: Bryant E (ed) Tsunami: the underrated hazard. School of Science and the Environment, Coventry University, Coventry. Cambridge University Press, Cambridge, pp 15–24Google Scholar
  22. Choy GL, Boatwright J (2007) The energy radiated by the 26 December 2004 Sumatra–Andaman earthquake estimated from 10-minute P-wave windows. Bull Seism Soc Am 97:S18–S24CrossRefGoogle Scholar
  23. Crowell BW, Bock Y, Melgar D (2012) Real-time inversion of GPS data for finite fault modeling and rapid hazard assessment. Geophys Res Lett 39:L09305.  https://doi.org/10.1029/2012GL051318ADSCrossRefGoogle Scholar
  24. Crowell BW, Melgar D, Bock Y, Haase JS, Geng J (2013) Earthquake magnitude scaling using seismogeodetic data. Geophys Res Lett 40:6089–6094.  https://doi.org/10.1002/2013GL058391ADSCrossRefGoogle Scholar
  25. Cummins PR (1997) Earthquake near field and W phase observations at teleseismic distances. Geophys Res Lett 24:2857–2860ADSCrossRefGoogle Scholar
  26. Duputel Z, Rivera L, Kanamori H, Hayes GP, Hirshorn B, Weinstein S (2011) Real-time W-phase inversions during the 2011 Tohoku-oki earthquake. Earth Planets Space 63(7):535–539ADSCrossRefGoogle Scholar
  27. Duputel Z, Rivera L, Kanamori H, Hayes GH (2012) W phase source inversion for moderate to large earthquakes (1990–2010). Geophy J Int 189:1125–1147ADSCrossRefGoogle Scholar
  28. Ebeling C, Okal E (2012) An extension of the E/M0 tsunami earthquake discriminant Theta to regional distances. Geophys J Int 190(3):1640–1656Google Scholar
  29. Evans JR, Allen S (1983) A teleseism-specific detection algorithm for single short-period traces. Bull Seism Soc Am 73:1173–1186Google Scholar
  30. Foster JH, Brooks BA, Wang D, Carter GS, Merrifield MA (2012) Improving Tsunami Warning Using Commercial Ships. Geophys Res Lett 39:L09603.  https://doi.org/10.1029/2012GL051367ADSCrossRefGoogle Scholar
  31. Fryer G, Hirshorn B, McCreery S, Cessaro RK, Weinstein S (2005) Tsunami warning in the near field: the approach in Hawaii. EOS 86:S44B-04Google Scholar
  32. Fryer GJ, Holschuh ND, Wang D, Becker N (2010) In: Improving tsunami warning with a rapid linear model, Abstract NH33A-1378 presented at 2010 fall meeting. AGU, San Francisco, 13–17 DecGoogle Scholar
  33. Fukao Y (1979) Tsunami earthquakes and subduction processes near deep-sea trenches. J Geophys Res 84:2303–2314ADSCrossRefGoogle Scholar
  34. Geller RJ, Kanamori H (1977) Magnitudes of great shallow earthquakes from 1904 to 1952. Bull Seismol Soc Am 67:587–598Google Scholar
  35. Gica E, Spillane VTMC, Chamberlin C, Newman J (2008) In: Development of the forecast propagation database for NOAA’s Short-term Inundation Forecast for Tsunamis (SIFT). NOAA Technical Memorandum OAR PMEL-139, Pacific Marine Environmental Laboratory, Seattle, p 95Google Scholar
  36. Giovanni MK, Beck SL, Wagner L (2002) The June 23, 2001 Peru earthquake and the southern Peru subduction zone. Geophys Res Lett 29:14:1–14:4CrossRefGoogle Scholar
  37. Global Centroid Moment Tensor Catalog, http://www.globalcmt.org
  38. Gower J (2005) Jason 1 detects the 26 December 2004 tsunami. Eos Trans AGU 86(4):37–38ADSCrossRefGoogle Scholar
  39. Gutenberg B (1945a) Amplitudes of surface waves and magnitudes of shallow earthquakes. Bull Seism Soc Am 35:3–12Google Scholar
  40. Gutenberg B (1945b) Amplitudes of P, PP, and S, and magnitudes of shallow earthquakes. Bull Seism Soc Am 35:57–69Google Scholar
  41. Gutenberg B (1945c) Magnitude determinations of deep-focus earthquakes. Bull Seism Soc Am 35:117–130Google Scholar
  42. Gutenberg B, Richter CF (1956a) Earthquake magnitude, intensity, energy and acceleration. Bull Seism Soc Am 46:105–145Google Scholar
  43. Gutenberg B, Richter CF (1956b) Magnitude and energy of earthquakes. Annali di Geofisica 9:1–15Google Scholar
  44. Hanks T, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350ADSCrossRefGoogle Scholar
  45. Hara T (2007a) Measurement of the duration of high-frequency radiation and its application to determination of the magnitudes of large shallow earthquakes. Earth Planets Space 59:227–231ADSCrossRefGoogle Scholar
  46. Hara T (2007b) Magnitude determination using duration of high frequency energy radiation and displacement amplitude: application to tsunami earthquakes. Earth Planets Space 59:561–565ADSCrossRefGoogle Scholar
  47. Hartzell S, Heaton T (1986) Rupture history of the 1984 Morgan Hill, California, earthquake from the inversion of strong motion records. Bull Seism Soc Am 76:649–674Google Scholar
  48. Hartzell S, Mendoza C (1991) Application of an iterative least- squares waveform inversion of strong-motion and teleseismic records to the 1978 Tabas, Iran earthquake. Bull Seism Soc Am 811:305–331Google Scholar
  49. Hayes GP, Rivera L, Kanamori H (2009) Source inversion of the W-Phase: real-time implementation and extension to low magnitudes. Seismol Res Lett 80(5):817–822CrossRefGoogle Scholar
  50. Hayes GP, Earle PS, Benz HM, Wald DJ, Briggs R, The USGS/NEIC Earthquake Response Team (2011) 88 hours: the U.S. Geological survey national earthquake information center response to the March 11, 2011 Mw 9.0 Tohoku earthquake. Seismol Res Lett 82(4):481–493CrossRefGoogle Scholar
  51. Henry C, Das S (2001) Aftershock zones of large shallow earthquakes: fault dimensions, aftershock area expansion and scaling relations. Geophys J Int 147:272–293ADSCrossRefGoogle Scholar
  52. Hirshorn B, Lindh A, Allen R (1987) Real time signal duration magnitudes from low-gain short period seismometers. USGS OFR 87:630Google Scholar
  53. Hirshorn B, Lindh G, Allen RV, Johnson C (1993) Real time magnitude estimation for a prototype early warning system (EWS) from the P-wave, and for earthquake hazards monitoring from the coda envelope. Seis Res Lett 64:48Google Scholar
  54. Hirshorn B, Weinstein S, Tsuboi, S. (2013). On the application of Mwp in the near field and the March 11, 2011 Tohoku earthquake. Pure Appl Geophys 170(6–8):975–991.  https://doi.org/10.1007/s00024-012-0495-3ADSCrossRefGoogle Scholar
  55. Hirshorn B (2004) Moment magnitudes from the initial P-wave for local tsunami warnings. Seism Res Lett 74:272–273Google Scholar
  56. Hirshorn B (2007) The Pacific tsunami warning center response to the Mw6.7 Kiholo Bay earthquake and lessons for the future. Seism Res Lett 78:299Google Scholar
  57. Hoechner A, Ge M, Babeyko Y, Sobolev SV (2013) Instant tsunami early warning based on real-time GPS – tohoku 2011 case study. Nat Hazards Earth Syst Sci 13:1285–1292ADSCrossRefGoogle Scholar
  58. Houston H, Kanamori H (1986) Source spectra of great earthquakes, teleseismic constraints on rupture process and strong motion. Bull Seism Soc Am 76:19–42Google Scholar
  59. Imamura F (1996) Review of tsunami simulation with a finite difference method. In: Yeh H, Liu P, Synolakis C (eds) Long-wave runup models. World Scientific, Singapore, pp 25–42Google Scholar
  60. Ishii M, Shearer PM, Houston H, Vidale JE (2005) Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array. Nature 435:933–936ADSCrossRefGoogle Scholar
  61. Johnson CE, Lindh A, Hirshorn B (1994) Robust regional phase association. US Geol Surv Open-File Rept 94:621Google Scholar
  62. Johnson CE, Bittenbinder A, Bogaert B, Dietz L, Kohler W (1995) Earthworm: a flexible approach to seismic network processing. IRIS Newslett XIV 2:1–4Google Scholar
  63. Kamigaichi O (2009) Tsunami forecasting and warning. In: Meyers RA (ed) Encyclopedia of Complexity and Systems Science. Springer, Heidelberg, pp 9592–9618CrossRefGoogle Scholar
  64. Kanamori H (1972) Mechanism of tsunami earthquakes. Phys Earth Planet Inter 6:246–259CrossRefGoogle Scholar
  65. Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82:2981–2987ADSCrossRefGoogle Scholar
  66. Kanamori H (1978) Quantification of earthquakes. Nature 271:411–414ADSCrossRefGoogle Scholar
  67. Kanamori H (1983) Magnitude scale and quantification of earthquakes. Tectonophysics 93:185–199ADSCrossRefGoogle Scholar
  68. Kanamori H (1993) W Phase. Geophys Res Lett 20:1691–1694ADSCrossRefGoogle Scholar
  69. Kanamori H, Kikuchi M (1993) The 1992 Nicaragua earthquake: a slow tsunami earthquake associated with subducted sediment. Nature 361:714–715ADSCrossRefGoogle Scholar
  70. Kanamori H (2006) Seismological aspects of the December 2004 great Sumatra Andaman earthquake. Earthquake Spectra 22:S1–S12CrossRefGoogle Scholar
  71. Kanamori H, Rivera L (2008) Source inversion of W phase – speeding up tsunami warning. Geophys J Int 175:222–238ADSCrossRefGoogle Scholar
  72. Kanamori H, Rivera L, Earthquake Research Institute (2008) Application of the W phase source inversion method to regional tsunami 1 Seismological Lab, California Institute of Technology, Pasadena, University of TokyoGoogle Scholar
  73. Kikuchi M, Yamanaka Y (2001) EIC Seismological Note Number 105, www.eic.eri-u-tokyo.ac.jp/EIC/EIC_news/105E.html
  74. Krüger F, Ohrnberger M (2005) Tracking the rupture of the Mw9.3 Sumatra earthquake over 1150 km at teleseismic distance. Nature 435:937–939ADSCrossRefGoogle Scholar
  75. Kowalik Z, Whitmore PM (1991) An investigation of two tsunamis recorded at Adak, Alaska. Sci Tsunami Haz 9:67–84Google Scholar
  76. Lamb H (1932) Hydrodynamics, 6th edn. Dover Publications, New YorkzbMATHGoogle Scholar
  77. Lay T, Kanamori H, Ammon C et al (2005) The Great Sumatra – Andaman earthquake of 26 December 2004. Science 308:1127–1133ADSCrossRefGoogle Scholar
  78. Lockwood OG, Kanamori H (2006) Wavelet analysis of the seismograms of the 2004 Sumatra–Andaman earthquake and its application to tsunami early warning. Geochem Geophys Geosyst 7:Q09013.  https://doi.org/10.1029/2006GC001272ADSCrossRefGoogle Scholar
  79. Lomax A, Michelini A, Piatanesi A (2007) An energy-duration procedure for rapid determination of earthquake magnitude and tsunamigenic potential. Geophys J Int 170:1195–1120ADSCrossRefGoogle Scholar
  80. Lomax A, Michelini A (2008) Mwpd: A duration-amplitude procedure for rapid determination of earthquake magnitude and tsunamigenic potential from P waveforms. Geophys J Int.  https://doi.org/10.1111/j.1365-246X.2008.03974
  81. Lomax A, Michelini A (2012) Tsunami early warning within 5–10 minutes. Pure Appl Geophys 169.  https://doi.org/10.1007/s00024-012-0512-6ADSCrossRefGoogle Scholar
  82. Melgar D, Bock Y, Crowell BW (2012) Real-time centroid moment tensor determination for large earthquakes from local and regional displacement records. Geophys J Int 188:703–718.  https://doi.org/10.1111/j.1365-246X.2011.05297.xADSCrossRefGoogle Scholar
  83. Melgar D, Crowell BW, Bock Y, Haase JS (2013) Rapid modeling of the 2011 Mw 9.0 Tohoku-oki earthquake with seismogeodesy. Geophys Res Lett 40:1–6CrossRefGoogle Scholar
  84. Melgar D, Crowell BW, Geng J, Allen RM, Bock Y, Riquelme S, Hill EM, Protti M, Ganas A (2015) Earthquake magnitude calculation without saturation from the scaling of peak ground displacement. Geophys Res Lett 42:5197–5205.  https://doi.org/10.1002/2015GL064278ADSCrossRefGoogle Scholar
  85. Melgar D et al (2016) Local tsunami warnings: perspectives from recent large events. Geophys Res Lett 43:1109–1117.  https://doi.org/10.1002/2015GL067100ADSCrossRefGoogle Scholar
  86. Mendoza C (1996) Rapid derivation of rupture history for large earthquakes. Seismol Res Lett 67:19–26CrossRefGoogle Scholar
  87. NOAA Special Report (2012) Proceedings and results of the 2011 NTHMP model benchmarking workshop, Department of Commerce and Texas A&M University at Galveston, p 437Google Scholar
  88. Newman AV, Okal EA (1998) Teleseismic estimates of radiated seismic energy: the E/M0 discriminant for tsunami earthquakes. J Geophys Res 103:26885–26898ADSCrossRefGoogle Scholar
  89. Okada Y (1985) Surface deformation due to shear and tensile faults in a half space. Bull Seismol Soc Am 75:1135–1154Google Scholar
  90. Okal EA, Talandier J (1989) Mm: a variable-period mantle magnitude. J Geophys Res 94:4169–4193ADSCrossRefGoogle Scholar
  91. Okal EA (1992a) Use of mantle magnitude Mm for reassessment of the moment of historical earthquakes-I: Shallow events. PAGEOPH 139:17–57CrossRefGoogle Scholar
  92. Park J, Song TA, Tromp J, Okal E, Stein S, Roult G, Clevede E, Laske G, Kanamori H, Davis P, Berger J, Braitenberg C, Camp MV, Xiang’e L, Heping S, Houze X, Rosat S (2005) Earth’s free oscillations excited by the 26 December 2004 Sumatra–Andaman earthquake. Science 20:1139–1144ADSCrossRefGoogle Scholar
  93. Richter CF (1935) An instrumental earthquake magnitude scale. Bull Seism Soc Am 25:1–32Google Scholar
  94. Rivera LA, Kanamori H, Duputel Z (2011) W phase source inversion using the high-rate regional GPS data of the 2011 Tohoku oki earthquake, in AGU fall meeting abstracts, vol 1, p 4Google Scholar
  95. Riquelme S, Bravo F, Melgar D, Benavente R, Geng J, Barrientos S, Campos J (2016) W phase source inversion using high-rate regional GPS data for large earthquakes. Geophys Res Lett 43(7):3178–3185ADSCrossRefGoogle Scholar
  96. Satake K (1994) Mechanism of the 1992 Nicaragua tsunami earthquake. Geophys Res Lett 21:2519–2522ADSCrossRefGoogle Scholar
  97. Savage JC (1972) Relation of corner frequency to fault dimensions. J Geophys Res 77:3788–3795ADSCrossRefGoogle Scholar
  98. Scholz C (1982) Scaling laws for large earthquakes: consequences for physical models. Bull Seism Soc Am 72:1–14Google Scholar
  99. Seno T, Hirata K (2007) Did the 2004 Sumatra–Andaman earth- quake involve a component of tsunami earthquakes? Bull Seism Soc Am 97:S296–S306CrossRefGoogle Scholar
  100. Stein S, Okal EA (2007a) Ultralong period seismic study of the December 2004 Indian Ocean earthquake and implications for regional tectonics and the subduction process. Bull Seism Soc Am 97:279–295CrossRefGoogle Scholar
  101. Stein S, Okal EA (2007b) Ultralong Period Seismic Study of the December 2004 Indian Ocean earthquake and implications for regional tectonics and the subduction process. Bull Seism Soc Am 97:S279–S295CrossRefGoogle Scholar
  102. Tatehata H (1997) The new tsunami warning system of the Japan meteorological agency. In: Hebenstreit G (ed) Perspectives on tsunami hazard reduction. Kluwer, Dordrecht, pp 175–188CrossRefGoogle Scholar
  103. Tsuboi SK, Abe K, Takano K, Yamanaka Y (1995) Rapid determination of Mw from broadband P waveforms. Bull Seism Soc Am 83:606–613Google Scholar
  104. Tsuboi S, Whitmore PM, Sokolowski TJ (1999) Application of Mwp to deep and teleseismic earthquakes. Bull Seism Soc Am 89:1345–1351Google Scholar
  105. Vanek J, Zatopek A, Karnik V, Kondorskaya N, Riznichenko Y, Savarenski S, Solovev S, Shebalin N (1962) Standardization of magnitude scales. Izv Acad Sci USSR Geophys Ser:108–111. English translationGoogle Scholar
  106. Vassiliou MS, Kanamori H (1982) The energy release in earth-quakes. Bull Seism Soc Am 72:371–387Google Scholar
  107. Wald DJ, Helmberger DV, Hartzell S (1990) Rupture process of the 1987 Superstition Hills earthquake from the inversion of strong-motion data. Bull Seism Soc Am 80:1079–1098Google Scholar
  108. Wang D, Walsh D, Becker N, Fryer G (2009) A methodology for tsunami wave propagation forecast in real time, EOS Trans AGU, 90(52), Fall Meet. Suppl., Abstract OS43A-1367Google Scholar
  109. Wang D, Becker NC, Walsh D, Fryer G, Weinstein S, McCreery C, Sardina V, Hsu V, Hirshorn B, Hayes G, Duputel Z, Rivera L, Kanamori H, Koyanagi K, Shiro B (2012) Real-time forecasting of the April 11, 2012 Sumatra Tsunami. Geophys Res Lett 39:L19601.  https://doi.org/10.1029/2012GL053081ADSCrossRefGoogle Scholar
  110. Weinstein SA, McCreery C, Hirshorn B, Whitmore P (2005) Comment on “A strategy to rapidly determine the magnitude of great earthquakes” by Menke W, Levin V. Eos 86:263ADSCrossRefGoogle Scholar
  111. Weinstein SA, Okal EA (2005) The mantle magnitude Mm and the slowness parameter 8: five years of real-time use in the context of tsunami warning. Bull Seism Soc Am 95:779–799CrossRefGoogle Scholar
  112. Weinstein SA, Lundgren PL (2008) Finite fault modeling in a tsunami warning center context. In: Tiampo KF, Weatherley DK, Weinstein SA (eds) Earthquakes: simulations, sources and tsunamis. Birkhauser, BaselGoogle Scholar
  113. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002Google Scholar
  114. Wessel P (2009) Analysis of observed and predicted tsunami travel times for the Pacific and Indian Oceans. Pure Appl Geophys 166:301–324.  https://doi.org/10.1007/s00024-008-0437-2ADSCrossRefGoogle Scholar
  115. Wessel P, Smith WHF (1991) Free software helps map and display data. Eos Trans AGU 72:441ADSCrossRefGoogle Scholar
  116. Whitmore PM, Sokolowski TJ (2002) Automatic earthquake processing developments at the US West Coast/Alaska tsunami warning center. Recent Research Developments in Seismology, pp 1–13, Kervala: Transworld Research Net- work. ISBN 81-7895, 072-3Google Scholar
  117. Whitmore PM, Tsuboi S, Hirshorn B, Sokolowski TJ (2002) Magnitude-dependent correction for Mwp. Sci Tsunami Hazards J20:187–192Google Scholar
  118. Widjo K et al (2006) Rapid survey on tsunami Java July 17 2006. http://nctr.pmel.noaa.gov/java20060717/tsunami-java170706_e.pdf.. Accessed July 2008
  119. Withers M, Aster R, Young C, Beiriger J, Harris M, Trujillo J (1998) A comparison of select trigger algorithms for auto- mated global seismic phase and event detection. Bull Seism Soc Am 88:95–106Google Scholar
  120. Yasuda T, Mase H (2013) Real-time tsunami prediction by inversion method using offshore observed GPS buoy data: Nankaido. J Waterway Port Coastal Ocean Eng 139(3):221–231CrossRefGoogle Scholar

Books and Reviews

  1. Abercrombie R, McGarr A, Di Toro G, Kanamori H (eds) (2006) Earth- quakes: radiated energy and the physics of faulting. In: Geophysical monographs 170. American Geophysical Union, Washington, DCGoogle Scholar
  2. Aki K, Richards PG (1980) Quantitative seismology theory and methods, vol 2. W.H. Freeman Co, San FranciscoGoogle Scholar
  3. Aki K, Richards PG (2002) Quantitative seismology, 2nd edn. University Science Books, SausalitoGoogle Scholar
  4. Båth M (1981) Earthquake magnitude – recent research and current trends. Earth Sci Rev 17:315–398ADSCrossRefGoogle Scholar
  5. Bormann P (ed) (2002) IASPEI new manual of seismological observatory practice, vol 1 and 2. GeoForschungsZentrum, Potsdam, p 1250Google Scholar
  6. Duda S, Aki K (eds) (1983) Quantification of earthquakes. Tectonophysics 93. Special issue 3(4):183–356Google Scholar
  7. Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 65(5):1073–1095Google Scholar
  8. Kanamori H (1994) Mechanics of earthquakes. Annu Rev Earth Planet Sci 22:307–237CrossRefGoogle Scholar
  9. Kanamori H, Rivera L (2006) Energy partitioning during an earth-quake. In: Abercrombie R, McGarr A, Kanamori H, Di Toro G (eds) Earthquakes: radiated energy and the physics of faulting. Geophysical monograph, vol 170. American Geophysical Union, Washington, DC, pp 3–13CrossRefGoogle Scholar
  10. Kanamori H, Brodsky E (2004) The Physics of earthquakes. Rep Prog Phys 67:1429–1496ADSMathSciNetCrossRefGoogle Scholar
  11. Kanamori H (2006) The diversity of the physics of earthquakes. Proc Japan Acad Ser B 80:297–316ADSCrossRefGoogle Scholar
  12. Lay T, Wallace TC (1995) Modern global seismology. Academic, San DiegoGoogle Scholar
  13. Okal EA (1992b) A student’s guide to teleseismic body wave amplitudes. Seism Res Lett 63(N2):169–180CrossRefGoogle Scholar
  14. Richter CF (1958) Elementary seismology. WH Freeman Co, San FranciscoGoogle Scholar
  15. Stein S, Wysession M (2003) An introduction to seismology, earthquakes, and earth structure. Blackwell Publishing, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2019

Authors and Affiliations

  • Barry Hirshorn
    • 1
    Email author
  • Stuart Weinstein
    • 2
  • Dailin Wang
    • 2
  • Kanoa Koyanagi
    • 2
  • Nathan Becker
    • 2
  • Charles McCreery
    • 2
  1. 1.NOAA/NWSEwa BeachUSA
  2. 2.NOAA/NWS/Pacific Tsunami Warning CenterEwa BeachUSA