Skip to main content

Correlated Percolation

Encyclopedia of Complexity and Systems Science

Definition of the Subject

Cluster concepts have been extremely useful in elucidating many problems in physics. Percolation theory provides a generic framework to study the behavior of the cluster distribution. In most cases, the theory predicts a geometrical transition at the percolation threshold, characterized in the percolative phase by the presence of a spanning cluster, which becomes infinite in the thermodynamic limit. Standard percolation usually deals with the problem when the constitutive elements of the clusters are randomly distributed. However, correlations cannot always be neglected. In this case, correlated percolation is the appropriate theory to study such systems. The origin of correlated percolation could be dated back to 1937 when Mayer (1937; Mayer and Ackermann 1937; Mayer and Harrison 1938; Mayer and Mayer 1940) proposed a theory to describe the condensation from a gas to a liquid in terms of mathematical clusters (for a review of cluster theory in simple fluids,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  • Abete T, de Candia A, Lairez D, Coniglio A (2004) Percolation Model for Enzyme Gel Degradation. Phys Rev Lett 93:228301

    Article  ADS  Google Scholar 

  • Aharony A, Gefen Y, Kapitulnik A (1984) Scaling at the percolation threshold above six dimensions. J Phys A 17:1197

    Article  MathSciNet  Google Scholar 

  • Aizenman M (1997) On the number of incipient spanning clusters. Nucl Phys B 485:551

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Alexander S, Grest GS, Nakanishi H, Witten TA (1984) Branched polymer approach to the structure of lattice animals and percolation clusters. J Phys A 17:L185

    Article  ADS  MathSciNet  Google Scholar 

  • Amitrano C, di Liberto F, Figari R, Peruggi F (1983) A-B droplets for a two-dimensional antiferromagnetic Ising model in external field H. J Phys A Math Gen 16:3925

    Article  ADS  Google Scholar 

  • Balog I, Uzelac K (2007) Invaded cluster algorithm for a tricritical point in a diluted Potts model. Phys Rev E 76:011103

    Article  ADS  Google Scholar 

  • Bastiaansen PJM, Knops HJF (1997) Correlated percolation and the correlated resistor network. J Phys A Math Gen 30:1791

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bialas P, Blanchard P, Fortunato S, Gandolfo D, Satz H (2000) Percolation and magnetization in the continuous spin Ising model. Nucl Phys B 583:368

    Article  ADS  Google Scholar 

  • Binder K (1976) “Clusters” in the Ising model, metastable states and essential singularity. Ann Phys NY 98:390

    Article  ADS  Google Scholar 

  • Birgeneau RJ, Cowley RA, Shirane G, Guggenheim HJ (1976) Spin correlations near the percolation concentration in two dimensions. Phys Rev Lett 37:940

    Article  ADS  Google Scholar 

  • Birgeneau RJ, Cowley RA, Shirane G, Tarvin JA, Guggenheim HJ (1980) Spin fluctuations in random magnetic-nonmagnetic two-dimensional antiferromagnets. II. Heisenberg percolation. Phys Rev B 21:317

    Article  ADS  Google Scholar 

  • Blanchard P, Digal S, Fortunato S, Gandolfo D, Mendes T, Satz H (2000) Cluster percolation in O(n) spin models. J Phys A Math Gen 33:8603

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Blote HWJ, Knops YMM, Nienhuis B (1992) Geometrical aspects of critical Ising configurations in two dimensions. Phys Rev Lett 68:3440

    Article  ADS  Google Scholar 

  • Broderix K, Löwe H, Müller P, Zippelius A (2000) Critical dynamics of gelation. Phys Rev E 63:011510

    Article  ADS  Google Scholar 

  • Bug ALR, Safran SA, Grest GS, Webman I (1985) Do interactions raise or lower a percolation threshold? Phys Rev Lett 55:1896

    Article  ADS  Google Scholar 

  • Bunde A, Havlin S (1991) Percolation I. In: Bunde A, Havlin S (eds) Fractals and disordered systems. Springer, New York, pp 51–95

    Chapter  Google Scholar 

  • Campbell AI, Anderson VJ, van Duijneveldt JS, Bartlett P (2005) Dynamical arrest in attractive colloids: The effect of long-range repulsion. Phys Rev Lett 94:208301

    Article  ADS  Google Scholar 

  • Campi X, Krivine H (2005) Zipf's law in multifragmentation. Phys Rev C 72:057602

    Article  ADS  Google Scholar 

  • Campi X, Krivine H, Plagnol E, Sator N (2003) “Little big bang” scenario of multifragmentation. Phys Rev C 67:044610

    Article  ADS  Google Scholar 

  • Campi X, Krivine H, Puente A (1999) On a definition of stable droplets in the lattice-gas model. Physica A 262:328

    Article  ADS  Google Scholar 

  • Campi X, Krivine H, Sator N (2001) Percolation line of self-bound clusters in supercritical fluids. Physica A 296:24

    Article  ADS  MATH  Google Scholar 

  • Chayes JT, Chayes L, Grimmet GR, Kesten H, Schonmann R (1989) The Correlation length for the high-density phase of bernoulli percolation. Ann Probab 17:1277

    Article  MathSciNet  MATH  Google Scholar 

  • Chayes L, Coniglio A, Machta J, Shtengel K (1999) Mean-field theory for percolation models of the Ising type. J Stat Phys 94:53

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chen SH, Rouch J, Sciortino F, Tartaglia P (1994) Static and dynamic properties of water-in-oil microemulsions near the critical and percolation points. J Phys Condens Matter 6:10855

    Article  ADS  Google Scholar 

  • Coniglio A (1975) Percolation problems and phase transitions. J Phys A 8:1773

    Article  ADS  Google Scholar 

  • Coniglio A (1976) Some cluster-size and percolation problems for interacting spins. Phys Rev B 13:2194

    Article  ADS  Google Scholar 

  • Coniglio A (1981) Thermal phase transition of the dilute s-state Potts and n-vector models at the percolation threshold. Phys Rev Lett 46:250

    Article  ADS  Google Scholar 

  • Coniglio A (1982) Cluster structure near the percolation threshold. J Phys A 15:3829

    Article  ADS  MathSciNet  Google Scholar 

  • Coniglio A (1983) Proceedings of Erice school on ferromagnetic transitions. Springer, New York

    Google Scholar 

  • Coniglio A (1985) Finely divided matter. In: Boccara N, Daoud M (eds) Proceedings of the les Houches Winter conference. Springer, New York

    Google Scholar 

  • Coniglio A (1989) Fractal structure of Ising and Potts clusters: Exact results. Phys Rev Lett 62:3054

    Article  ADS  MathSciNet  Google Scholar 

  • Coniglio A (1990) Correlations in thermal and geometrical systems. In: Stanley HE, Ostrowsky W (eds) Correlation and connectivity – geometric aspects of physics, chemistry and biology, vol 188, NATO ASI series. Kluwer, Dordrecht

    Google Scholar 

  • Coniglio A (2000) Geometrical approach to phase transitions in frustrated and unfrustrated systems. Physica A 281:129

    Article  ADS  Google Scholar 

  • Coniglio A, Figari R (1983) Droplet structure in Ising and Potts models. J Phys A Math Gen 16:L535

    Article  ADS  Google Scholar 

  • Coniglio A, Klein W (1980) Clusters and Ising critical droplets: A renormalisation group approach. J Phys A 13:2775

    Article  ADS  Google Scholar 

  • Coniglio A, Lubensky T (1980) Epsilon expansion for correlated percolation: Applications to gels. J Phys A 13:1783

    Article  ADS  Google Scholar 

  • Coniglio A, Peruggi F (1982) Clusters and droplets in the q-state Potts model. J Phys A 15:1873

    Article  ADS  Google Scholar 

  • Coniglio A, Stanley HE (1984) Screening of deeply invaginated clusters and the critical behavior of the random superconducting network. Phys Rev Lett 52:1068

    Article  ADS  Google Scholar 

  • Coniglio A, Stauffer D (1980) Fluctuations of the infinite network in percolation theory. Lett Nuovo Cimento 28:33

    Article  Google Scholar 

  • Coniglio A, Zia RVP (1982) Analysis of the Migdal-Kadanoff renormalisation group approach to the dilute s-state Potts model. An alternative scheme for the percolation (s to 1) limit. J Phys A Math Gen 15:L399

    Article  ADS  MathSciNet  Google Scholar 

  • Coniglio A, Nappi C, Peruggi F, Russo L (1976) Percolation and phase transitions in the Ising model. Commun Math Phys 51:315

    Article  ADS  MathSciNet  Google Scholar 

  • Coniglio A, Nappi C, Peruggi F, Russo L (1977a) Percolation points and critical point in the Ising model. J Phys A 10:205

    Article  ADS  MathSciNet  Google Scholar 

  • Coniglio A, De Angelis U, Forlani A, Lauro G (1977b) Distribution of physical clusters. J Phys A Math Gen 10:219

    Article  ADS  Google Scholar 

  • Coniglio A, De Angelis U, Forlani A (1977c) Pair connectedness and cluster size. J Phys A Math Gen 10:1123

    Article  ADS  Google Scholar 

  • Coniglio A, di Liberto F, Monroy G, Peruggi F (1991) Cluster approach to spin glasses and the frustrated-percolation problem. Phys Rev B 44:12605

    Article  ADS  Google Scholar 

  • Coniglio A, Stanley HE, Klein W (1979) Site-bond correlated-percolation problem: A statistical mechanical model of polymer gelation. Phys Rev Lett 42:518

    Article  ADS  Google Scholar 

  • Coniglio A, Stanley HE, Klein W (1982) Solvent effects on polymer gels: A statistical-mechanical model. Phys Rev B 25:6805

    Article  ADS  MathSciNet  Google Scholar 

  • Coniglio A, di Liberto F, Monroy G, Peruggi F (1989) Exact relations between droplets and thermal fluctuations in external field. J Phys A 22:L837

    Article  ADS  Google Scholar 

  • Coniglio A, de Arcangelis L, del Gado E, Fierro A, Sator N (2004) Percolation, gelation and dynamical behaviour in colloids. J Phys Condens Matter 16:S4831

    Article  ADS  Google Scholar 

  • Coniglio A, Abete T, de Candia A, del Gado E, Fierro A (2007) Static and dynamic heterogeneities in irreversible gels and colloidal gelation. J Phys Condens Matter 19:205103

    Article  ADS  Google Scholar 

  • Cox MAA, Essam JW (1976) Series expansion study of the pair connectedness in site percolation models. J Phys C 9:3985

    Article  ADS  Google Scholar 

  • de Arcangelis L (1987) Multiplicity of infinite clusters in percolation above six dimensions. J Phys A 20:3057

    Article  ADS  Google Scholar 

  • de Candia A, del Gado E, Fierro A, Sator N, Coniglio A (2005) Colloidal gelation, percolation and structural arrest. Phys A 358:239

    Article  Google Scholar 

  • de Gennes PG (1975) Critical dimensionality for a special percolation problem. J Phys Paris 36:1049

    Article  Google Scholar 

  • de Gennes PG (1976) La percolation: Un concept unificateur. La Recherche 7:919

    Google Scholar 

  • de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  • del Gado E, de Arcangelis L, Coniglio A (2000) La percolation: un concept unificateur. Eur Phys J E 2:359

    Article  Google Scholar 

  • del Gado E, Fierro A, de Arcangelis L, Coniglio A (2004) Slow dynamics in gelation phenomena: From chemical gels to colloidal glasses. Phys Rev E 69:051103

    Article  ADS  Google Scholar 

  • Deng Y, Guo W, Blote HWJ (2005) Percolation between vacancies in the two-dimensional Blume-Capel model. Phys Rev E 72:016101

    Article  ADS  Google Scholar 

  • Dhar D (1999) The Abelian sandpile and related models. Physica A 263:4

    Article  ADS  Google Scholar 

  • Dunn AG, Essam JW, Ritchie DS (1975) Series expansion study of the pair connectedness in bond percolation models. J Phys C 8:4219

    Article  ADS  Google Scholar 

  • Duplantier B, Saleur H (1989) Exact fractal dimension of 2D Ising clusters. Phys Rev Lett 63:2536

    Article  ADS  MathSciNet  Google Scholar 

  • Essam JW (1980) Percolation theory. Rep Prog Phys 43:833

    Article  ADS  MathSciNet  Google Scholar 

  • Fisher ME (1967a) The theory of condensation and the critical point. Phys NY 3:255

    Google Scholar 

  • Fisher ME (1967b) Magnetic critical point exponents—their interrelations and meaning. J Appl Phys 38:981

    Article  ADS  Google Scholar 

  • Fisher ME (1971) The theory of critical point singularities. In: Green MS (ed) Critical phenomena. Proceeding of the international school of physics “Enrico Fermi” course LI, Varenna on lake Como (Italy). Academic, New York, p 1

    Google Scholar 

  • Fisher ME, Widom B (1969) Decay of correlations in linear systems. J Chem Phys 50:3756

    Article  ADS  Google Scholar 

  • Flory PJ (1941) Molecular size distribution in three dimensional polymers. I. Gelation. J Am Chem Soc 63:3083

    Article  Google Scholar 

  • Flory PJ (1979) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  • Fortuin CM, Kasteleyn PW (1972) On the random-cluster model: I. Introduction and relation to other models. Physica 57:536

    Article  ADS  MathSciNet  Google Scholar 

  • Fortunato S, Satz H (2000) Percolation and deconfinement in SU(2) gauge theory. Nucl Phys B Proc Suppl 83:452

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Fortunato S, Aharony A, Coniglio C, Stauffer D (2004) Number of spanning clusters at the high-dimensional percolation thresholds. Phys Rev E 70:056116

    Article  ADS  Google Scholar 

  • Frenkel J (1939a) Statistical theory of condensation phenomena. J Chem Phys 7:200

    Article  ADS  Google Scholar 

  • Frenkel J (1939b) A general theory of heterophase fluctuations and pretransition phenomena. J Chem Phys 7:538

    Article  ADS  Google Scholar 

  • Gefen Y, Aharony A, Mandelbrot BB, Kirkpatrick S (1981) Solvable fractal family, and its possible relation to the backbone at percolation. Phys Rev Lett 47:1771

    Article  ADS  MathSciNet  Google Scholar 

  • Gimel JC, Nicolai T, Durand D (2001) Monte-Carlo simulation of transient gel formation and break-up during reversible aggregation. Eur Phys J E 5:415

    Article  Google Scholar 

  • Given JA, Stell G (1991) Approximations of mean spherical type for lattice percolation models. J Phys A Math Gen 24:3369

    Article  ADS  Google Scholar 

  • Grest GS, Webman I, Safran SA, Bug ALR (1986) Dynamic percolation in microemulsions. Phys Rev A 33:2842

    Article  ADS  Google Scholar 

  • Harris AB, Lubensky TC, Holcomb W, Dasgupta C (1975) Renormalization-group approach to percolation problems. Phys Rev Lett 35:327

    Article  ADS  Google Scholar 

  • Havlin S, Bunde A (1991) Percolation II. In: Bunde A, Havlin S (eds) Fractals and disordered systems. Springer, New York, pp 97–149

    Chapter  Google Scholar 

  • Heermann DW, Stauffer D (1981) Phase diagram for three-dimensional correlated site-bond percolation. Z Phys B 44:339

    Article  ADS  Google Scholar 

  • Heermann DW, Coniglio A, Klein W, Stauffer D (1984) Nucleation and metastability in three-dimensional Ising models. J Stat Phys 36:447

    Article  ADS  Google Scholar 

  • Hill TL (1955) Molecular clusters in imperfect gases. J Chem Phys 23:617

    Article  ADS  Google Scholar 

  • Hu CK (1984) Percolation, clusters, and phase transitions in spin models. Phys Rev B 29:5103

    Article  ADS  Google Scholar 

  • Hu CK (1992) Histogram Monte Carlo renormalization group method for phase transition models without critical slowing down. Phys Rev Lett 69:2739

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hu CK, Lin CY (1996) Universal scaling functions for numbers of percolating clusters on planar lattices. Phys Rev Lett 77:8

    Article  ADS  Google Scholar 

  • Hu CK, Mak KS (1989) Monte Carlo study of the Potts model on the square and the simple cubic lattices. Phys Rev B 40:5007

    Article  ADS  Google Scholar 

  • Jan N, Coniglio A, Stauffer D (1982) Study of droplets for correlated site-bond percolation in two dimensions. J Phys A 15:L699

    Article  ADS  Google Scholar 

  • Janke W, Schakel AMJ (2004) Geometrical vs. Fortuin–Kasteleyn clusters in the two-dimensional q-state Potts model. Nucl Phys B 700:385

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kasteleyn PW, Fortuin CM (1969) Phase transitions in lattice systems with random local properties. J Phys Soc Japan Suppl 26:11

    ADS  Google Scholar 

  • Kertesz J (1989) Existence of weak singularities when going around the liquid-gas critical point. Physica A 161:58

    Article  ADS  Google Scholar 

  • Kertesz J, Coniglio A, Stauffer D (1983) Clusters for random and interacting percolation. In: Deutscher G, Zallen R, Adler J (eds) Percolation structures and processes, vol 5, Annals of the Israel Physical Society. Adam Hilger, Bristol, pp 121–147. The Israel Physical Society, Jerusalem

    Google Scholar 

  • Kirkpatrick S (1978) The geometry of the percolation threshold. AIP Conf Proc 40:99

    Article  ADS  Google Scholar 

  • Klein W, Gould H, Tobochnik J, Alexander FJ, Anghel M, Johnson G (2000) Clusters and fluctuations at mean-field critical points and spinodals. Phys Rev Lett 85:1270

    Article  ADS  Google Scholar 

  • Ma YG (1999) Application of information theory in nuclear liquid gas phase transition. Phys Rev Lett 83:3617

    Article  ADS  Google Scholar 

  • Ma YG, Han DD, Shen WQ, Cai XZ, Chen JG, He ZJ, Long JL, Ma GL, Wang K, Wei YB, Yu LP, Zhang HY, Zhong C, Zhou XF, Zhu ZY (2004) Statistical nature of cluster emission in nuclear liquid–vapour phase coexistence. J Phys G Nucl Part Phys 30:13

    Article  ADS  Google Scholar 

  • Machta J, Newman CM, Stein DL (2007) The Percolation signature of the spin glass transition. J Stat Phys 130:113

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mader CM, Chappars A, Elliott JB, Moretto LG, Phair L, Wozniak GJ (2003) The three-dimensional Ising model and its Fisher analysis: A paradigm of liquid-vapor coexistence in nuclear multifragmentation. Phys Rev C 68:064601

    Article  ADS  Google Scholar 

  • Makse HA, Havlin S, Stanley HE (1995) Modelling urban growth patterns. Nature 377:608

    Article  ADS  Google Scholar 

  • Makse HA, Havlin S, Schwartz M, Stanley HE (1996) Method for generating long-range correlations for large systems. Phys Rev E 53:5445

    Article  ADS  MATH  Google Scholar 

  • Makse HA, Andrade JS Jr, Batty M, Havlin S, Stanley HE (1998) Modeling urban growth patterns with correlated percolation. Phys Rev E 58:7054

    Article  ADS  Google Scholar 

  • Mallamace F, Chen SH, Liu Y, Lobry L, Micali N (1999) Percolation and viscoelasticity of triblock copolymer micellar solutions. Physica A 266:123

    Article  ADS  Google Scholar 

  • Mallamace F, Gambadauro P, Micali N, Tartaglia P, Liao C, Chen SH (2000) Kinetic glass transition in a micellar system with short-range attractive interaction. Phys Rev Lett 84:5431

    Article  ADS  Google Scholar 

  • Mallamace F, Chen SH, Coniglio A, de Arcangelis L, del Gado E, Fierro A (2006) Complex viscosity behavior and cluster formation in attractive colloidal systems. Phys Rev E 73:020402

    Article  ADS  Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature. Freeman, San Francisco

    MATH  Google Scholar 

  • Martin JE, Adolf D, Wilcoxon JP (1988) Viscoelasticity of near-critical gels. Phys Rev Lett 61:2620

    Article  ADS  Google Scholar 

  • Mayer JE (1937) The statistical mechanics of condensing systems. I. J Chem Phys 5:67

    Article  ADS  MATH  Google Scholar 

  • Mayer JE, Ackermann PG (1937) The statistical mechanics of condensing systems. II. J Chem Phys 5:74

    Article  ADS  MATH  Google Scholar 

  • Mayer JE, Harrison SF (1938) Statistical mechanics of condensing systems. III. J Chem Phys 6:87

    Article  ADS  Google Scholar 

  • Mayer JE, Mayer MG (1940) Statistical mechanics. Wiley, New York

    MATH  Google Scholar 

  • Muller-Krhumbaar H (1974) Percolation in a lattice system with particle interaction. Phys Lett A 50:27

    Article  ADS  Google Scholar 

  • Murata KK (1979) Hamiltonian formulation of site percolation in a lattice gas. J Phys A 12:81

    Article  ADS  Google Scholar 

  • Nienhuis B, Berker AN, Riedel EK, Shick M (1979) First- and second-order phase transitions in potts models: Renormalization-group Solution. Phys Rev Lett 43:737

    Article  ADS  Google Scholar 

  • Odagaki T, Ogita N, Matsuda H (1975) Percolation approach to the metal-insulator transition in super-critical fluid metals. J Phys Soc Jpn 39:618

    Article  ADS  Google Scholar 

  • Padoa Scioppa C, Sciortino F, Tartaglia P (1998) Coniglio-Klein mapping in the metastable region. Phys Rev E 57:3797

    Article  ADS  Google Scholar 

  • Pike R, Stanley HE (1981) Order propagation near the percolation threshold. J Phys A 14:L169

    Article  ADS  Google Scholar 

  • Qian X, Deng Y, Blote HWJ (2005) Dilute Potts model in two dimensions. Phys Rev E 72:056132

    Article  ADS  Google Scholar 

  • Romano F, Tartaglia P, Sciortino F (2007) Gas–liquid phase coexistence in a tetrahedral patchy particle model. J Phys Condens Matter 19:322101

    Article  Google Scholar 

  • Roussenq J, Coniglio A, Stauffer D (1982) Study of droplets for correlated site-bond percolation in three dimensions. J Phys Paris 43:L703

    Article  Google Scholar 

  • Safran SA, Webman I, Grest GS (1985) Percolation in interacting colloids. Phys Rev A 32:506

    Article  ADS  Google Scholar 

  • Sahimi M, Mukhopadhyay S (1996) Scaling properties of a percolation model with long-range correlations. Phys Rev E 54:3870

    Article  ADS  Google Scholar 

  • Sahimi M, Knackstedt MA, Sheppard AP (2000) Scaling properties of a percolation model with long-range correlations. Phys Rev E 61:4920

    Article  ADS  Google Scholar 

  • Saika-Voivod I, Zaccarelli E, Sciortino F, Buldyrev SV, Tartaglia P (2004) Effect of bond lifetime on the dynamics of a short-range attractive colloidal system. Phys Rev E 70:041401

    Article  ADS  Google Scholar 

  • Saleur H, Duplantier B (1987) Exact determination of the percolation hull exponent in two dimensions. Phys Rev Lett 58:2325

    Article  ADS  MathSciNet  Google Scholar 

  • Sator N (2003) Clusters in simple fluids. Phys Rep 376:1

    Article  ADS  MathSciNet  Google Scholar 

  • Skal AS, Shklovskii BI (1975) Topology of an infinite cluster in theory of percolation and its relationship to theory of hopping conduction. Sov Phys Semicond 8:1029

    Google Scholar 

  • Stanley HE (1977) Cluster shapes at the percolation threshold: And effective cluster dimensionality and its connection with critical-point exponents. J Phys A 10:1211

    Article  Google Scholar 

  • Stauffer D (1976) Gelation in concentrated critically branched polymer solutions. Percolation scaling theory of intramolecular bond cycles. J Chem Soc Faraday Trans 72:1354

    Article  Google Scholar 

  • Stauffer D (1981) Monte-Carlo simulation of Ising droplets in correlated site-bond percolation. J Phys Lett 42:99

    Article  Google Scholar 

  • Stauffer D (1990) Droplets in Ising models. Physica A 168:614

    Article  ADS  MathSciNet  Google Scholar 

  • Stauffer D (1997) Minireview: New results for old percolation. Physica A 242:1. for a minireview on the multiplicity of the infinite clusters

    Article  ADS  MathSciNet  Google Scholar 

  • Stauffer D, Aharony A (1994) Introduction to percolation theory. Taylor and Francis, London

    MATH  Google Scholar 

  • Stauffer D, Coniglio A, Adam M (1982) Gelation and critical phenomena. Polymer Networks 44:103. For a review on percolation and gelation (special volume Polymer networks, Dusek K (ed))

    Article  Google Scholar 

  • Stella AL, Vanderzande C (1989) Scaling and fractal dimension of Ising clusters at the d=2 critical point. Phys Rev Lett 62:1067

    Article  ADS  MathSciNet  Google Scholar 

  • Suzuki M (1974) New universality of critical exponents. Progr Theor Phys Kyoto 51:1992

    Article  ADS  Google Scholar 

  • Swendsen RH, Wang JS (1987) Nonuniversal critical dynamics in Monte Carlo simulations. Phys Rev Lett 58:86

    Article  ADS  Google Scholar 

  • Sykes MF, Gaunt DS (1976) A note on the mean size of clusters in the Ising model. J Phys A 9:2131

    Article  ADS  Google Scholar 

  • Tanaka T, Swislow G, Ohmine I (1979) Phase separation and gelation in gelatin gels. Phys Rev Lett 42:1556

    Article  ADS  Google Scholar 

  • Temesvari T (1984) Multicritical behaviour in the q-state Potts lattice-gas. J Phys A Math Gen 17:1703

    Article  ADS  MathSciNet  Google Scholar 

  • Vernon DC, Plischke M, Joos B (2001) Viscoelasticity near the gel point: A molecular dynamics study. Phys Rev E 64:031505

    Article  ADS  Google Scholar 

  • Wang JS (1989) Clusters in the three-dimensional Ising model with a magnetic field. Physica A 161:249

    Article  ADS  Google Scholar 

  • Wang JS, Swendsen R (1990) Cluster Monte Carlo algorithms. Physica A 167:565

    Article  ADS  MathSciNet  Google Scholar 

  • Weinrib A (1984) Long-range correlated percolation. Phys Rev B 29:387

    Article  ADS  MathSciNet  Google Scholar 

  • Weinrib A, Halperin BI (1983) Critical phenomena in systems with long-range-correlated quenched disorder. Phys Rev B 27:413

    Article  ADS  Google Scholar 

  • Wolff U (1988) Lattice field theory as a percolation process. Phys Rev Lett 60:1461

    Article  ADS  MathSciNet  Google Scholar 

  • Wolff U (1989a) Comparison between cluster Monte Carlo algorithms in the Ising model. Phys Lett B 228:379

    Article  ADS  Google Scholar 

  • Wolff U (1989b) Collective Monte Carlo updating for spin systems. Phys Rev Lett 62:361

    Article  ADS  Google Scholar 

  • Wu F (1982) The Potts model. Rev Mod Phys 54:235

    Article  ADS  Google Scholar 

  • Zaccarelli E (2007) Colloidal gels: Equilibrium and non-equilibrium routes. J Phys Condens Matter 19:323101

    Article  Google Scholar 

Books and Reviews

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Coniglio .

Editor information

Editors and Affiliations

Appendix: Random Cluster Model and Ising Droplets

Appendix: Random Cluster Model and Ising Droplets

In 1969, Kasteleyn and Fortuin (KF) (1969, Fortuin and Kasteleyn 1972) introduced a correlated bond percolation model, called the random cluster model, and showed that the partition function of this percolation model was identical to the partition function of the q-state Potts model. They also showed that the thermal quantities in the Potts model could be expressed in terms of connectivity properties of the random cluster model. Much later in 1980, Coniglio and Klein (1980) independently have used a different approach with the aim to define the proper droplets in the Ising model. It was only later that it was realized that the two approaches were related, although the meaning of the clusters in the two approaches is different. We will discuss these two approaches here and show that their statistical properties are the same.

Random Cluster Model

Let us consider an Ising system of spins \( {S}_i=\pm 1 \) on a lattice with nearest-neighbor interactions, and, when needed, let us assume periodic boundary conditions in both directions. All interactions have strength J, and the Hamiltonian is

$$ \mathcal{H}\left(\left\{{S}_i\right\}\right)=-{\displaystyle \sum_{\left\langle i,j\right\rangle }J}\left({S}_i{S}_j-1\right) , $$
(54)

where {S i } represents a spin configuration and the sum is over nn spins. The main point in the KF approach is to replace the original Ising Hamiltonian with an annealed diluted Hamiltonian

$$ {\mathcal{H}}^{\prime}\left(\left\{{S}_i\right\}\right)=-{\displaystyle \sum_{\left\langle i,j\right\rangle }{J}_{ij}^{\prime }}\left({S}_i{S}_j-1\right) , $$
(55)

where

$$ {J}_{ij}^{\prime }=\left\{\begin{array}{ll}{J}^{\prime}\hfill & \mathrm{with}\ \mathrm{probability} p\hfill \\ {}0\hfill & \mathrm{with}\ \mathrm{probability} \left(1-p\right) .\hfill \end{array}\right. $$
(56)

The parameter p is chosen such that the Boltzmann factor associated with an Ising configuration of the original model coincides with the weight associated with a spin configuration of the diluted Ising model:

$$ \begin{array}{c}\hfill {e}^{-\beta \mathcal{H}\left(\left\{{S}_i\right\}\right)}\equiv {\displaystyle \prod_{\left\langle i,j\right\rangle }{\mathrm{e}}^{\beta J\left({S}_i{S}_j-1\right)}}\hfill \\ {}\hfill ={\displaystyle \prod_{\left\langle i,j\right\rangle}\left(p{\mathrm{e}}^{\beta {J}^{\prime}\left({S}_i{S}_j-1\right)}+\left(1-p\right)\right)} ,\hfill \end{array} $$
(57)

where \( \beta =1/{k}_{\mathrm{B}}T \), k B is the Boltzmann constant, and T is the temperature. In order to satisfy Eq. 57, we must have

$$ {\mathrm{e}}^{\beta J\left({S}_i{S}_j-1\right)}=p{\mathrm{e}}^{\beta {J}^{\prime}\left({S}_i{S}_j-1\right)}+\left(1-p\right) . $$
(58)

We take now the limit \( {J}^{\prime}\mapsto \infty \). In such a case, \( {\mathrm{e}}^{\beta {J}^{\prime}\left({S}_i{S}_j-1\right)} \) equals the Kronecker delta \( {\delta}_{S_i{S}_j} \), and from Eq. 58, p is given by

$$ p=1-{\mathrm{e}}^{-2\beta J} . $$
(59)

From Eq. 57, by performing the products we can write

$$ {\mathrm{e}}^{-\beta \mathcal{H}\left(\left\{{S}_i\right\}\right)}={\displaystyle \sum_C{W}_{\mathrm{KF}}}\left(\left\{{S}_i\right\},C\right) , $$
(60)

where

$$ {W}_{\mathrm{KF}}\left(\left\{{S}_i\right\},C\right)={p}^{\left|C\right|}{\left(1-p\right)}^{\left|A\right|}{\displaystyle \prod_{\left\langle i,j\right\rangle \in C}{\delta}_{S_i{S}_j}} . $$
(61)

Here, C is a configuration of interactions where \( \left|C\right| \) is the number of interactions of strength \( {J}^{\prime }=\infty \) and \( \left|A\right| \) the number of interactions of strength 0. \( \left|C\right|+\left|A\right|=\left|E\right| \), where \( \left|E\right| \) is the total number of edges in the lattice.

W KF({S i }, C) is the statistical weight associated (a) with a spin configuration {S i } and (b) with a set of interactions in the diluted model where \( \left|C\right| \) edges have ∞ strength interactions, while all the other edges have 0 strength interactions. The Kronecker delta indicates that two spins connected by an ∞ strength interaction must be in the same state. Therefore, the configuration C can be decomposed in clusters of parallel spins connected by infinite strength interactions.

Finally, the partition function of the Ising model Z is obtained by summing the Boltzmann factor Eq. 60 over all the spin configurations. Since each cluster in the configuration C gives a contribution of 2, we obtain:

$$ Z={\displaystyle \sum_C{p}^{\left|C\right|}}{\left(1-p\right)}^{\left|A\right|}{2}^{N_C} , $$
(62)

where N C is the number of clusters in the configuration C.

In conclusion, in the KF formalism, the partition function Eq. 62 is equivalent to the partition function of a correlated bond percolation model (Hu 1984, 1992; Hu and Mak 1989; Kasteleyn and Fortuin 1969; Fortuin and Kasteleyn 1972) where the weight of each bond configuration C is given by

$$ W(C)={\displaystyle \sum_{\left\{{S}_i\right\}}{W}_{\mathrm{KF}}}\left(\left\{{S}_i\right\},C\right)={p}^{\left|C\right|}{\left(1-p\right)}^{\left|A\right|}{2}^{N_C} $$
(63)

which coincides with the weight of the random percolation except for the extra factor \( {2}^{N_C} \). Clearly, all percolation quantities in this correlated bond model are weighted according to Eq. 63 and coincide with the corresponding percolation quantities of the KF clusters made of parallel spins connected by an ∞ strength interaction, whose statistical weight is given by Eq. 61. Moreover, using Eqs. 61 and 60, Kasteleyn and Fortuin have proved that (Kasteleyn and Fortuin 1969; Fortuin and Kasteleyn 1972)

$$ \left|\left\langle {S}_i\right\rangle \right|={\left\langle {\gamma}_i^{\infty}\right\rangle}_W $$
(64)

and

$$ \left\langle {S}_i{S}_j\right\rangle ={\left\langle {\gamma}_{ij}\right\rangle}_W , $$
(65)

where 〈 … 〉 is the Boltzmann average and 〈 … 〉 W is the average over bond configurations in the bond-correlated percolation with weights given by Eq. 63. Here, \( {\gamma}_i^{\infty }(C) \) is equal to 1 if the spin at site i belongs to the spanning cluster, 0 otherwise; γ ij (C) is equal to 1 if the spins at sites i and j belong to the same cluster, 0 otherwise.

Connection Between the Ising Droplets and the Random Cluster Model

In the approach followed by Coniglio and Klein (1980), given a configuration of spins, one introduces at random connecting bonds between nn parallel spins with probability p b; antiparallel spins are not connected with probability 1. Clusters are defined as maximal sets of parallel spins connected by bonds. The bonds here are fictitious; they are introduced only to define the clusters and do not modify the interaction energy as in the FK approach. For a given realization of bonds, we distinguish the subsets C and B of nn parallel spins, respectively, connected and not connected by bonds and the subset D of nn antiparallel spins. The union of C, B, and D coincides with the total set of nn pair of spins E. The statistical weight of a configuration of spins and bonds is (Coniglio 1990; Coniglio et al. 1989)

$$ {W}_{\mathrm{CK}}\left(\left\{{S}_i\right\},C\right)={p}_{\mathrm{b}}^{\mid C\mid }{\left(1-{p}_{\mathrm{b}}\right)}^{\mid B\mid }{\mathrm{e}}^{-\beta \mathcal{H}\left(\left\{{S}_i\right\}\right)} , $$
(66)

where \( \left|C\right| \) and \( \left|B\right| \) are the number of nn pairs of parallel spins, respectively, in the subset C and B not connected by bonds.

For a given spin configuration, using the Newton binomial rule, we have the following sum rule:

$$ {\displaystyle \sum_C{p}_{\mathrm{b}}^{\mid C\mid }}{\left(1-{p}_{\mathrm{b}}\right)}^{\mid B\mid }=1 . $$
(67)

From Eq. 67 follows that the Ising partition function, Z, may be obtained by summing Eq. 66 over all bond configurations and then over all spin configurations.

$$ Z={\displaystyle \sum_{\left\{{S}_i\right\}}{\displaystyle \sum_C{W}_{\mathrm{CK}}}}\left(\left\{{S}_i\right\},C\right)={\displaystyle \sum_{\left\{{S}_i\right\}}{\mathrm{e}}^{-\beta \mathcal{H}\left(\left\{{S}_i\right\}\right)}} . $$
(68)

The partition function of course does not depend on the value of p b which controls the bond density. By tuning p b instead, it is possible to tune the size of the clusters. For example, by taking \( {p}_{\mathrm{b}}=1 \), the clusters would coincide with nearest-neighbor parallel spins, while for \( {p}_{\mathrm{b}}=0 \), the clusters are reduced to single spins. By choosing the droplet bond probability \( {p}_{\mathrm{b}}=1-{\mathrm{e}}^{-2\beta J} \equiv p \) and observing that \( {\mathrm{e}}^{-\beta \mathcal{H}\left(\left\{{S}_i\right\}\right)}={\mathrm{e}}^{-2\beta J\left|D\right|} \), where \( \left|D\right| \) is the number of antiparallel pairs of spins, the weight Eq. 66 simplifies and becomes

$$ {W}_{\mathrm{CK}}\left(\left\{{S}_i\right\},C\right)={p}^{\mid C\mid }{\left(1-p\right)}^{\mid A\mid} , $$
(69)

where \( \left|A\right|=\left|B\right|+\left|D\right|=\left|E\right|-\left|C\right| \).

From Eq. 69, we can calculate the weight W(C) that a given configuration of connecting bonds C between nn parallel spins occurs. This configuration C can occur in many spin configurations. So we have to sum over all spin configurations compatible with the bond configuration C, namely:

$$ W(C)={\displaystyle \sum_{\left\{{S}_i\right\}}{W}_{\mathrm{CK}}}\left(\left\{{S}_i\right\},C\right){\displaystyle \prod_{\left\langle i,j\right\rangle \in C}{\delta}_{S_i{S}_j}} , $$
(70)

where, due to the product of the Kronecker delta, the sum is over all spin configurations compatible with the bond configuration C. From Eqs. 59 and 70, we have

$$ \begin{array}{l}W(C)={\displaystyle \sum_{\left\{{S}_i\right\}}{p}^{\mid C\mid }}{\left(1-p\right)}^{\mid A\mid }{\displaystyle \prod_{\left\langle i,j\right\rangle \in C}{\delta}_{S_i{S}_j}}\\ {} ={p}^{\left|C\right|}{\left(1-p\right)}^{\left|A\right|}{2}^{N_C} .\end{array} $$
(71)

Consequently in Eq. 68, by taking first the sum over all spins compatible with the configuration C, the partition function Z can be written as in the KF formalism Eq. 62.

$$ Z={\displaystyle \sum_C{p}^{\left|C\right|}}{\left(1-p\right)}^{\left|A\right|}{2}^{N_C} . $$
(72)

In spite of the strong analogies, the CK clusters and the KF clusters have a different meaning. In the CK formalism, the clusters are defined directly in a given configuration of the Ising model as parallel spin connected by fictitious bonds, while in the KF formalism, clusters are defined in the equivalent random cluster model. However, due to the equality of the weights in Eqs. 69 and 61, the statistical properties of both clusters are identical (Coniglio et al. 1989), and due to the relations between Eqs. 61 and 63, both coincide with those of the correlated bond percolation whose weight is given by Eq. 63. More precisely, any percolation quantity g(C) which depends only on the bond configuration has the same average:

$$ {\left\langle g(C)\right\rangle}_{\mathrm{KF}}={\left\langle g(C)\right\rangle}_{\mathrm{CK}}={\left\langle g(C)\right\rangle}_W , $$
(73)

where 〈 … 〉KF and 〈 … 〉CK are the average over spin and bond configurations with weights given by Eqs. 61 and 69, respectively, and 〈 … 〉 W is the average over bond configurations in the bond-correlated percolation with weights given by Eq. 63. In view of Eq. 73, it follows (Coniglio et al. 1989)

$$ \left|\left\langle {S}_i\right\rangle \right|={\left\langle {\gamma}_i^{\infty}\right\rangle}_{\mathrm{CK}} $$
(74)

and

$$ \left\langle {S}_i{S}_j\right\rangle ={\left\langle {\gamma}_{ij}\right\rangle}_{\mathrm{CK}} . $$
(75)

We end this section noting that in order to generate an equilibrium CK droplet configuration in a computer simulation, it is enough to equilibrate a spin configuration of the Ising model and then introduce at random fictitious bonds between parallel spins with a probability given by Eq. 59.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Coniglio, A., Fierro, A. (2016). Correlated Percolation. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_104-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_104-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Correlated Percolation
    Published:
    03 September 2020

    DOI: https://doi.org/10.1007/978-3-642-27737-5_104-4

  2. Original

    Correlated Percolation
    Published:
    10 May 2016

    DOI: https://doi.org/10.1007/978-3-642-27737-5_104-3